python使用matplotlib画柱状图、散点图

yipeiwu_com6年前Python基础

本文实例为大家分享了python使用matplotlib画柱状图、散点图的具体代码,供大家参考,具体内容如下

柱状图(plt.bar)

代码与注释

import numpy as np
from matplotlib import pyplot as plt
plt.figure(figsize=(9,6))
n = 8
X = np.arange(n)+1
#X是1,2,3,4,5,6,7,8,柱的个数
# numpy.random.uniform(low=0.0, high=1.0, size=None), normal
#uniform均匀分布的随机数,normal是正态分布的随机数,0.5-1均匀分布的数,一共有n个
Y1 = np.random.uniform(0.5,1.0,n)
Y2 = np.random.uniform(0.5,1.0,n)
plt.bar(X,Y1,width = 0.35,facecolor = 'lightskyblue',edgecolor = 'white')
#width:柱的宽度
plt.bar(X+0.35,Y2,width = 0.35,facecolor = 'yellowgreen',edgecolor = 'white')
#水平柱状图plt.barh,属性中宽度width变成了高度height
#打两组数据时用+
#facecolor柱状图里填充的颜色
#edgecolor是边框的颜色
#想把一组数据打到下边,在数据前使用负号
#plt.bar(X, -Y2, width=width, facecolor='#ff9999', edgecolor='white')
#给图加text
for x,y in zip(X,Y1):
  plt.text(x+0.3, y+0.05, '%.2f' % y, ha='center', va= 'bottom')
 
for x,y in zip(X,Y2):
  plt.text(x+0.6, y+0.05, '%.2f' % y, ha='center', va= 'bottom')
plt.ylim(0,+1.25)
plt.show()

结果

散点图(plt.scatter)

代码与注释

plt.figure(figsize=(9,6))
n=1000
#rand 均匀分布和 randn高斯分布
x=np.random.randn(1,n)
y=np.random.randn(1,n)
T=np.arctan2(x,y)
plt.scatter(x,y,c=T,s=25,alpha=0.4,marker='o')
#T:散点的颜色
#s:散点的大小
#alpha:是透明程度
plt.show()

结果

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python测试驱动开发实例

本文实例讲述了python测试驱动开发的方法,分享给大家供大家参考。具体方法如下: import unittest from main import Sample class S...

Python使用smtp和pop简单收发邮件完整实例

SMTP SMTP是发送邮件的协议,Python内置对SMTP的支持,可以发送纯文本邮件、HTML邮件以及带附件的邮件。 Python对SMTP支持有smtplib和email两个模块,...

学习python之编写简单简单连接数据库并执行查询操作

学习python之编写简单简单连接数据库并执行查询操作

python 连接数据库操作, 方法如下: 在本机的mysql 数据库中有一个名为yao的库,其中有一个名为user的表,表中的内容如图 下面,则是python连接数据库的方法,及查找...

Python学习笔记之迭代器和生成器用法实例详解

本文实例讲述了Python学习笔记之迭代器和生成器用法。分享给大家供大家参考,具体如下: 迭代器和生成器 迭代器 每次可以返回一个对象元素的对象,例如返回一个列表。我们到目前为止使...

pandas 中对特征进行硬编码和onehot编码的实现

pandas 中对特征进行硬编码和onehot编码的实现

首先介绍两种编码方式硬编码和onehot编码,在模型训练所需要数据中,特征要么为连续,要么为离散特征,对于那些值为非数字的离散特征,我们要么对他们进行硬编码,要么进行onehot编码,转...