python实现爬山算法的思路详解

yipeiwu_com5年前Python基础

问题

找图中函数在区间[5,8]的最大值 

重点思路

爬山算法会收敛到局部最优,解决办法是初始值在定义域上随机取乱数100次,总不可能100次都那么倒霉。

实现

import numpy as np
import matplotlib.pyplot as plt
import math
# 搜索步长
DELTA = 0.01
# 定义域x从5到8闭区间
BOUND = [5,8]
# 随机取乱数100次
GENERATION = 100
def F(x):
  return math.sin(x*x)+2.0*math.cos(2.0*x)
def hillClimbing(x):
  while F(x+DELTA)>F(x) and x+DELTA<=BOUND[1] and x+DELTA>=BOUND[0]:
    x = x+DELTA
  while F(x-DELTA)>F(x) and x-DELTA<=BOUND[1] and x-DELTA>=BOUND[0]:
    x = x-DELTA
  return x,F(x)
def findMax():
  highest = [0,-1000]
  for i in range(GENERATION):
    x = np.random.rand()*(BOUND[1]-BOUND[0])+BOUND[0]
    currentValue = hillClimbing(x)
    print('current value is :',currentValue)
    
    if currentValue[1] > highest[1]:
      highest[:] = currentValue
  return highest
[x,y] = findMax()
print('highest point is x :{},y:{}'.format(x,y))

运行结果:

总结

以上所述是小编给大家介绍的python实现爬山算法的思路详解,希望对大家有所帮助,如果大家有任何疑问欢迎给我留言,小编会及时回复大家的!

相关文章

Python语言进阶知识点总结

Python语言进阶知识点总结

数据结构和算法 算法:解决问题的方法和步骤 评价算法的好坏:渐近时间复杂度和渐近空间复杂度。 渐近时间复杂度的大O标记: - 常量时间复杂度 - 布隆过滤器 / 哈希存储 - 对数时间复...

python并发和异步编程实例

关于并发、并行、同步阻塞、异步非阻塞、线程、进程、协程等这些概念,单纯通过文字恐怕很难有比较深刻的理解,本文就通过代码一步步实现这些并发和异步编程,并进行比较。解释器方面本文选择pyth...

使用pycharm设置控制台不换行的操作方法

使用pycharm设置控制台不换行的操作方法

pandas进行打印,控制台的显示默认是换行的在pycharm中的控制台也没有办法设置 可加入如下代码打印,结果不换行,看着数据更加直观 import pandas as pd i...

python实现的一个p2p文件传输实例

考虑到我手上的服务器逐渐的增多,有时候需要大规模的部署同一个文件,例如因为方便使用systemtap这个工具定位问题,需要把手上几百台服务器同时安装kernel-debuginfo这个包...

Python和Java进行DES加密和解密的实例

DES 为 Data Encryption Standard (数据加密标准)的缩写,是一种常见的对称加密算法。有关对称加密与非对称加密的特点及其应用场景,本文就不描述了,读者可以自行...