python实现爬山算法的思路详解

yipeiwu_com6年前Python基础

问题

找图中函数在区间[5,8]的最大值 

重点思路

爬山算法会收敛到局部最优,解决办法是初始值在定义域上随机取乱数100次,总不可能100次都那么倒霉。

实现

import numpy as np
import matplotlib.pyplot as plt
import math
# 搜索步长
DELTA = 0.01
# 定义域x从5到8闭区间
BOUND = [5,8]
# 随机取乱数100次
GENERATION = 100
def F(x):
  return math.sin(x*x)+2.0*math.cos(2.0*x)
def hillClimbing(x):
  while F(x+DELTA)>F(x) and x+DELTA<=BOUND[1] and x+DELTA>=BOUND[0]:
    x = x+DELTA
  while F(x-DELTA)>F(x) and x-DELTA<=BOUND[1] and x-DELTA>=BOUND[0]:
    x = x-DELTA
  return x,F(x)
def findMax():
  highest = [0,-1000]
  for i in range(GENERATION):
    x = np.random.rand()*(BOUND[1]-BOUND[0])+BOUND[0]
    currentValue = hillClimbing(x)
    print('current value is :',currentValue)
    
    if currentValue[1] > highest[1]:
      highest[:] = currentValue
  return highest
[x,y] = findMax()
print('highest point is x :{},y:{}'.format(x,y))

运行结果:

总结

以上所述是小编给大家介绍的python实现爬山算法的思路详解,希望对大家有所帮助,如果大家有任何疑问欢迎给我留言,小编会及时回复大家的!

相关文章

对django views中 request, response的常用操作详解

request 获取post请求中的json数据 def hello(request): data = json.loads(request.body) ... json格式还...

书单|人生苦短,你还不用python!

书单|人生苦短,你还不用python!

前言 在编程语言中, Python 长期稳居前五,不仅已经成为数据分析、人工智能领域必不可少的工具,还被越来越多地公司用于网站搭建。Python 方向岗位的薪水在水涨船高,成为目前最有潜...

删除DataFrame中值全为NaN或者包含有NaN的列或行方法

如果存在以下DataFrame 年龄 性别 手机号 0 2 男 NaN 1 3 女 NaN 2 4...

Python实现计算长方形面积(带参数函数demo)

Python实现计算长方形面积(带参数函数demo)

如下所示: # 计算面积函数 def area(width, height): return width * height def print_welcome(name):...

django自带serializers序列化返回指定字段的方法

django orm 有个defer方法,指定模型排除的字段。 如下返回的Queryset, 排除‘username', 'id'。 users=models.UserInfo.ob...