python实现爬山算法的思路详解

yipeiwu_com6年前Python基础

问题

找图中函数在区间[5,8]的最大值 

重点思路

爬山算法会收敛到局部最优,解决办法是初始值在定义域上随机取乱数100次,总不可能100次都那么倒霉。

实现

import numpy as np
import matplotlib.pyplot as plt
import math
# 搜索步长
DELTA = 0.01
# 定义域x从5到8闭区间
BOUND = [5,8]
# 随机取乱数100次
GENERATION = 100
def F(x):
  return math.sin(x*x)+2.0*math.cos(2.0*x)
def hillClimbing(x):
  while F(x+DELTA)>F(x) and x+DELTA<=BOUND[1] and x+DELTA>=BOUND[0]:
    x = x+DELTA
  while F(x-DELTA)>F(x) and x-DELTA<=BOUND[1] and x-DELTA>=BOUND[0]:
    x = x-DELTA
  return x,F(x)
def findMax():
  highest = [0,-1000]
  for i in range(GENERATION):
    x = np.random.rand()*(BOUND[1]-BOUND[0])+BOUND[0]
    currentValue = hillClimbing(x)
    print('current value is :',currentValue)
    
    if currentValue[1] > highest[1]:
      highest[:] = currentValue
  return highest
[x,y] = findMax()
print('highest point is x :{},y:{}'.format(x,y))

运行结果:

总结

以上所述是小编给大家介绍的python实现爬山算法的思路详解,希望对大家有所帮助,如果大家有任何疑问欢迎给我留言,小编会及时回复大家的!

相关文章

Python函数式编程指南(三):迭代器详解

3. 迭代器 3.1. 迭代器(Iterator)概述 迭代器是访问集合内元素的一种方式。迭代器对象从集合的第一个元素开始访问,直到所有的元素都被访问一遍后结束。 迭代器不能回退,只能往...

Python使用random和tertools模块解一些经典概率问题

random 模块中的常用函数 复制代码 代码如下: random() 返回一个位于区间 [0,1] 内的实数; uniform(a, b) 返回一个位于区间 [a,b] 内的实数; r...

python中时间转换datetime和pd.to_datetime详析

python中时间转换datetime和pd.to_datetime详析

前言 我们在python对数据进行操作时,经常会选取某一时间段的数据进行分析。这里为大家介绍两个我经常用到的用来选取某一时间段数据的函数:datetime( )和pd.to_dateti...

Python返回真假值(True or False)小技巧

Python返回真假值(True or False)小技巧

在昨天关于substring的blog中有如下一段代码: 也许你已经发现,在Python 3中其实有办法只用一行完成函数: 复制代码 代码如下: >>> def is...

Python异常处理操作实例详解

本文实例讲述了Python异常处理操作。分享给大家供大家参考,具体如下: 一、异常处理的引入 >>>whileTrue: try: x = int(input("P...