Python之NumPy(axis=0 与axis=1)区分详解

yipeiwu_com6年前Python基础

python中的axis究竟是如何定义的呢?他们究竟代表是DataFrame的行还是列?考虑以下代码:

>>>df = pd.DataFrame([[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]], \
columns=["col1", "col2", "col3", "col4"])
>>>df
  col1 col2 col3 col4
  0   1   1   1   1
  1   2   2   2   2
  2   3   3   3   3

如果我们调用df.mean(axis=1),我们将得到按行计算的均值

>>> df.mean(axis=1)
0  1
1  2
2  3

然而,如果我们调用 df.drop((name, axis=1),我们实际上删掉了一列,而不是一行:

>>> df.drop("col4", axis=1)
  col1 col2 col3
0   1   1   1
1   2   2   2
2   3   3   3

Can someone help me understand what is meant by an "axis" in pandas/numpy/scipy?

有人能帮我理解一下,在pandas、numpy、scipy三都当中axis参数的真实含义吗?

投票最高的答案揭示了问题的本质:

其实问题理解axis有问题,df.mean其实是在每一行上取所有列的均值,而不是保留每一列的均值。也许简单的来记就是axis=0代表往跨行(down),而axis=1代表跨列(across),作为方法动作的副词(译者注)

换句话说:

  • 使用0值表示沿着每一列或行标签\索引值向下执行方法
  • 使用1值表示沿着每一行或者列标签模向执行对应的方法

下图代表在DataFrame当中axis为0和1时分别代表的含义:

axis参数作用方向图示

另外,记住,Pandas保持了Numpy对关键字axis的用法,用法在Numpy库的词汇表当中有过解释:

轴用来为超过一维的数组定义的属性,二维数据拥有两个轴:第0轴沿着行的垂直往下,第1轴沿着列的方向水平延伸。

所以问题当中第一个列子 df.mean(axis=1)代表沿着列水平方向计算均值,而第二个列子df.drop(name, axis=1) 代表将name对应的列标签(们)沿着水平的方向依次删掉。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

快速排序的算法思想及Python版快速排序的实现示例

快速排序是C.R.A.Hoare于1962年提出的一种划分交换排序。它采用了一种分治的策略,通常称其为分治法(Divide-and-ConquerMethod)。 1.分治法的基本思想...

Numpy中的mask的使用

Numpy中的mask的使用

numpy中矩阵选取子集或者以条件选取子集,用mask是一种很好的方法 简单来说就是用bool类型的indice矩阵去选择, mask = np.ones(X.shape[0],...

解决python 无法加载downsample模型的问题

downsample 在最新版本里面修改了位置 from theano.tensor.single import downsample (旧版本) 上面以上的的import会有error...

基于python实现高速视频传输程序

今天要说的是一个高速视频流的采集和传输的问题,我不是研究这一块的,没有使用什么算法,仅仅是兴趣导致我很想搞懂这个问题.     1,首先是视频数据[摄像头图...

python 监测内存和cpu的使用率实例

我就废话不多说了,直接上代码吧! import paramiko import pymysql import time linux = ['192.168.0.179'] def...