python数据挖掘需要学的内容

yipeiwu_com6年前Python基础

1、Pandas库的操作

Panda是数据分析特别重要的一个库,我们要掌握以下三点:

· pandas 分组计算;

· pandas 索引与多重索引;

索引比较难,但是却是非常重要的

· pandas 多表操作与数据透视表

2、numpy数值计算

numpy数据计算主要应用是在数据挖掘,对于以后的机器学习,深度学习,这也是一个必须掌握的库,我们要掌握以下内容:

· Numpy array理解;

· 数组索引操作;

· 数组计算;

· Broadcasting(线性代数里面的知识)

3、数据可视化-matplotlib与seaborn

· Matplotib语法

python最基本的可视化工具就是matplotlib。咋一看Matplotlib与matlib有点像,要搞清楚二者的关系是什么,这样学习起来才会比较轻松。

· seaborn的使用

seaborn是一个非常漂亮的可视化工具。

· pandas绘图功能

前面说过pandas是做数据分析的,但它也提供了一些绘图的API。

4、数据挖掘入门

这部分是最难也是最有意思的一部分,要掌握以下几个部分:

· 机器学习的定义

在这里跟数据挖掘先不做区别

· 代价函数的定义

· Train/Test/Validate

· Overfitting的定义与避免方法

5、数据挖掘算法

数据挖掘发展到现在,算法已经非常多,下面只需掌握最简单的,最核心的,最常用的算法:

· 最小二乘算法;

· 梯度下降;

· 向量化;

· 极大似然估计;

· Logistic Regression;

· Decision Tree;

· RandomForesr;

· XGBoost;

6、数据挖掘实战

通过机器学习里面最着名的库scikit-learn来进行模型的理解。

相关文章

python版本的读写锁操作方法

本文实例讲述了python版本的读写锁操作方法。分享给大家供大家参考,具体如下: 最近要用到读写锁的机制,但是python2.7的自带库里居然木有. 网上讲读写锁的例子众多,但是原理简单...

Pandas 缺失数据处理的实现

数据丢失(缺失)在现实生活中总是一个问题。 机器学习和数据挖掘等领域由于数据缺失导致的数据质量差,在模型预测的准确性上面临着严重的问题。 在这些领域,缺失值处理是使模型更加准确和有效的重...

深入浅析Python科学计算库Scipy及安装步骤

一、Scipy 入门 1.1、Scipy 简介及安装 官网:http://www.scipy.org/SciPy 安装:在C:\Python27\Scripts下打开cmd执行: 执...

Python实现的视频播放器功能完整示例

本文实例讲述了Python实现的视频播放器功能。分享给大家供大家参考,具体如下: # -*- coding:utf-8 -*- #! python3 # --------------...

python使用webbrowser浏览指定url的方法

本文实例讲述了python使用webbrowser浏览指定url的方法。分享给大家供大家参考。具体如下: 这段代码提示用户输入关键词,通过webbrowser打开浏览器浏览google...