python数据挖掘需要学的内容

yipeiwu_com6年前Python基础

1、Pandas库的操作

Panda是数据分析特别重要的一个库,我们要掌握以下三点:

· pandas 分组计算;

· pandas 索引与多重索引;

索引比较难,但是却是非常重要的

· pandas 多表操作与数据透视表

2、numpy数值计算

numpy数据计算主要应用是在数据挖掘,对于以后的机器学习,深度学习,这也是一个必须掌握的库,我们要掌握以下内容:

· Numpy array理解;

· 数组索引操作;

· 数组计算;

· Broadcasting(线性代数里面的知识)

3、数据可视化-matplotlib与seaborn

· Matplotib语法

python最基本的可视化工具就是matplotlib。咋一看Matplotlib与matlib有点像,要搞清楚二者的关系是什么,这样学习起来才会比较轻松。

· seaborn的使用

seaborn是一个非常漂亮的可视化工具。

· pandas绘图功能

前面说过pandas是做数据分析的,但它也提供了一些绘图的API。

4、数据挖掘入门

这部分是最难也是最有意思的一部分,要掌握以下几个部分:

· 机器学习的定义

在这里跟数据挖掘先不做区别

· 代价函数的定义

· Train/Test/Validate

· Overfitting的定义与避免方法

5、数据挖掘算法

数据挖掘发展到现在,算法已经非常多,下面只需掌握最简单的,最核心的,最常用的算法:

· 最小二乘算法;

· 梯度下降;

· 向量化;

· 极大似然估计;

· Logistic Regression;

· Decision Tree;

· RandomForesr;

· XGBoost;

6、数据挖掘实战

通过机器学习里面最着名的库scikit-learn来进行模型的理解。

相关文章

python网络编程调用recv函数完整接收数据的三种方法

最近在使用python进行网络编程开发一个通用的tcpclient测试小工具。在使用socket进行网络编程中,如何判定对端发送一条报文是否接收完成,是进行socket网络开发必须要考虑...

Python学习小技巧之列表项的排序

本文介绍的是关于Python列表项排序的相关内容,分享出来供大家参考学习,下面来看看详细的介绍: 典型代码1: data_list = [6, 9, 1, 3, 0, 10, 100...

Django 路由层URLconf的实现

分组 分组的目的:让服务端获得url中的具体数据,通过分组,把需要的数据按函数传参的方式传递给服务器后台 1-无名分组 若要从URL 中捕获一个值,只需要在它周围放置一对圆括号 #...

python用户管理系统的实例讲解

python用户管理系统的实例讲解

学Python这么久了,第一次写一个这么多的代码(我承认只有300多行,重复的代码挺多的,我承认我确实垃圾),但是也挺不容易的 自定义函数+装饰器,每一个模块写的一个函数 很多地方能用装...

在Django的View中使用asyncio的方法

起步 Django 是个同步框架,本文并不是 让 Django 变成异步框架。而是对于在一个 view 中需要请求多次 http api 的场景。 一个简单的例子 例子来源于&nbs...