python数据挖掘需要学的内容

yipeiwu_com6年前Python基础

1、Pandas库的操作

Panda是数据分析特别重要的一个库,我们要掌握以下三点:

· pandas 分组计算;

· pandas 索引与多重索引;

索引比较难,但是却是非常重要的

· pandas 多表操作与数据透视表

2、numpy数值计算

numpy数据计算主要应用是在数据挖掘,对于以后的机器学习,深度学习,这也是一个必须掌握的库,我们要掌握以下内容:

· Numpy array理解;

· 数组索引操作;

· 数组计算;

· Broadcasting(线性代数里面的知识)

3、数据可视化-matplotlib与seaborn

· Matplotib语法

python最基本的可视化工具就是matplotlib。咋一看Matplotlib与matlib有点像,要搞清楚二者的关系是什么,这样学习起来才会比较轻松。

· seaborn的使用

seaborn是一个非常漂亮的可视化工具。

· pandas绘图功能

前面说过pandas是做数据分析的,但它也提供了一些绘图的API。

4、数据挖掘入门

这部分是最难也是最有意思的一部分,要掌握以下几个部分:

· 机器学习的定义

在这里跟数据挖掘先不做区别

· 代价函数的定义

· Train/Test/Validate

· Overfitting的定义与避免方法

5、数据挖掘算法

数据挖掘发展到现在,算法已经非常多,下面只需掌握最简单的,最核心的,最常用的算法:

· 最小二乘算法;

· 梯度下降;

· 向量化;

· 极大似然估计;

· Logistic Regression;

· Decision Tree;

· RandomForesr;

· XGBoost;

6、数据挖掘实战

通过机器学习里面最着名的库scikit-learn来进行模型的理解。

相关文章

使用Python实现一个栈判断括号是否平衡

栈(Stack)在计算机领域是一个被广泛应用的集合,栈是线性集合,访问都严格地限制在一段,叫做顶(top)。 举个例子,栈就想一摞洗干净的盘子,你每次取一个新盘子,都是放在这一摞盘子的最...

在python shell中运行python文件的实现

在python shell中运行python文件的实现

最近在学习flask开发,写好程序后需要在python shell中运行测试功能。专门抽时间研究了下,总结以防止以后遗忘。 这是测试文件的结构,python_example主文件夹,下面...

浅析Python与Mongodb数据库之间的操作方法

MongoDB 是目前最流行的 NoSQL 数据库之一,使用的数据类型 BSON(类似 JSON)。 1. 安装Mongodb和pymongo Mongodb的安装和配置 Mongodb...

Python open读写文件实现脚本

1.open使用open打开文件后一定要记得调用文件对象的close()方法。比如可以用try/finally语句来确保最后能关闭文件。file_object = op...

浅谈python中拼接路径os.path.join斜杠的问题

调试程序的过程中,发现通过os.path.join拼接的路径出现了反斜杠 directory1='/opt/apps/upgradePackage' directory2='icp_...