python数据挖掘需要学的内容

yipeiwu_com6年前Python基础

1、Pandas库的操作

Panda是数据分析特别重要的一个库,我们要掌握以下三点:

· pandas 分组计算;

· pandas 索引与多重索引;

索引比较难,但是却是非常重要的

· pandas 多表操作与数据透视表

2、numpy数值计算

numpy数据计算主要应用是在数据挖掘,对于以后的机器学习,深度学习,这也是一个必须掌握的库,我们要掌握以下内容:

· Numpy array理解;

· 数组索引操作;

· 数组计算;

· Broadcasting(线性代数里面的知识)

3、数据可视化-matplotlib与seaborn

· Matplotib语法

python最基本的可视化工具就是matplotlib。咋一看Matplotlib与matlib有点像,要搞清楚二者的关系是什么,这样学习起来才会比较轻松。

· seaborn的使用

seaborn是一个非常漂亮的可视化工具。

· pandas绘图功能

前面说过pandas是做数据分析的,但它也提供了一些绘图的API。

4、数据挖掘入门

这部分是最难也是最有意思的一部分,要掌握以下几个部分:

· 机器学习的定义

在这里跟数据挖掘先不做区别

· 代价函数的定义

· Train/Test/Validate

· Overfitting的定义与避免方法

5、数据挖掘算法

数据挖掘发展到现在,算法已经非常多,下面只需掌握最简单的,最核心的,最常用的算法:

· 最小二乘算法;

· 梯度下降;

· 向量化;

· 极大似然估计;

· Logistic Regression;

· Decision Tree;

· RandomForesr;

· XGBoost;

6、数据挖掘实战

通过机器学习里面最着名的库scikit-learn来进行模型的理解。

相关文章

Linux下python制作名片示例

Linux下python制作名片示例

建立cards_main文件: # _*_ coding:utf-8 _*_ """ file: cards_main.py date: 2018-07-18 19:47 auth...

Python中Numpy ndarray的使用详解

本文主讲Python中Numpy数组的类型、全0全1数组的生成、随机数组、数组操作、矩阵的简单运算、矩阵的数学运算。 尽管可以用python中list嵌套来模拟矩阵,但使用Numpy库更...

Python Selenium 之数据驱动测试的实现

Python Selenium 之数据驱动测试的实现

数据驱动模式的测试好处相比普通模式的测试就显而易见了吧!使用数据驱动的模式,可以根据业务分解测试数据,只需定义变量,使用外部或者自定义的数据使其参数化,从而避免了使用之前测试脚本中固定的...

tensorflow获取变量维度信息

tensorflow版本1.4 获取变量维度是一个使用频繁的操作,在tensorflow中获取变量维度主要用到的操作有以下三种: Tensor.shape Tensor.get...

用Cython加速Python到“起飞”(推荐)

用Cython加速Python到“起飞”(推荐)

事先声明,标题没有把“Python”错打成“Cython”,因为要讲的就是名为“Cython”的东西。 Cython是让Python脚本支持C语言扩展的编译器,Cython能够将Pyt...