Pandas之Fillna填充缺失数据的方法

yipeiwu_com6年前Python基础

约定:

import pandas as pd
import numpy as np
from numpy import nan as NaN

填充缺失数据

fillna()是最主要的处理方式了。

df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]])
df1

代码结果:

0 1 2
0 1.0 2.0 3.0
1 NaN NaN 2.0
2 NaN NaN NaN
3 8.0 8.0 NaN

用常数填充:

df1.fillna(100)

代码结果:

0 1 2
0 1.0 2.0 3.0
1 100.0 100.0 2.0
2 100.0 100.0 100.0
3 8.0 8.0 100.0

通过字典填充不同的常数:

df1.fillna({0:10,1:20,2:30})

代码结果:

0 1 2
0 1.0 2.0 3.0
1 10.0 20.0 2.0
2 10.0 20.0 30.0
3 8.0 8.0 30.0

传入inplace=True直接修改原对象:

df1.fillna(0,inplace=True)
df1

代码结果:

0 1 2
0 1.0 2.0 3.0
1 0.0 0.0 2.0
2 0.0 0.0 0.0
3 8.0 8.0 0.0

传入method=” “改变插值方式:

df2=pd.DataFrame(np.random.randint(0,10,(5,5)))
df2.iloc[1:4,3]=NaN;df2.iloc[2:4,4]=NaN
df2

代码结果:

0 1 2 3 4
0 6 6 2 4.0 1.0
1 4 7 0 NaN 5.0
2 6 5 5 NaN NaN
3 1 9 9 NaN NaN
4 4 8 1 5.0 9.0

df2.fillna(method='ffill')#用前面的值来填充

代码结果:

0 1 2 3 4
0 6 6 2 4.0 1.0
1 4 7 0 4.0 5.0
2 6 5 5 4.0 5.0
3 1 9 9 4.0 5.0
4 4 8 1 5.0 9.0

传入limit=” “限制填充个数:

df2.fillna(method='bfill',limit=2)

代码结果:

0 1 2 3 4
0 6 6 2 4.0 1.0
1 4 7 0 NaN 5.0
2 6 5 5 5.0 9.0
3 1 9 9 5.0 9.0
4 4 8 1 5.0 9.0

传入axis=” “修改填充方向:

df2.fillna(method="ffill",limit=1,axis=1)

代码结果:

0 1 2 3 4
0 6.0 6.0 2.0 4.0 1.0
1 4.0 7.0 0.0 0.0 5.0
2 6.0 5.0 5.0 5.0 NaN
3 1.0 9.0 9.0 9.0 NaN
4 4.0 8.0 1.0 5.0 9.0

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

详解Django-channels 实现WebSocket实例

引入 先安装三个模块 pip install channels pip install channels_redis pip install pywin32 创建一个Dja...

python采用django框架实现支付宝即时到帐接口

因工作需要研究了支付宝即时到帐接口,并成功应用到网站上,把过程拿出来分享。 即时到帐只是支付宝众多商家服务中的一个,表示客户付款,客户用支付宝付款,支付宝收到款项后,马上通知你,并且此笔...

详解python中自定义超时异常的几种方法

最近在项目中调用第三方接口时候,经常会出现请求超时的情况,或者参数的问题导致调用异代码异常。针对超时异常,查询了python 相关文档,没有并发现完善的包来根据用户自定义的时间来抛出超时...

numpy:找到指定元素的索引示例

目的:在numpy数组中知道指定元素的索引 函数: np.argwhere >>>x >>>array([[0, 1, 2], [3, 4,...

Python常见数据结构详解

本文详细罗列归纳了Python常见数据结构,并附以实例加以说明,相信对读者有一定的参考借鉴价值。 总体而言Python中常见的数据结构可以统称为容器(container)。而序列(如列表...