如何通过python画loss曲线的方法

yipeiwu_com5年前Python基础

1. 首先导入一些python画图的包,读取txt文件,假设我现在有两个模型训练结果的records.txt文件

import numpy as np
import matplotlib.pyplot as plt
import pylab as pl
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
data1_loss =np.loadtxt("valid_RCSCA_records.txt") 
data2_loss = np.loadtxt("valid_SCRCA_records.txt") 

2. 我自己的数据第一列是训练步数,第二列的loss,所以取出相应列的数据作为绘图的x和y

x = data1_loss[:,0]
y = data1_loss[:,1]
x1 = data2_loss[:,0]
y1 = data2_loss[:,1]

3. 先创建一幅图,再在这幅图上添加一个小图,小图用来显示部分放大的曲线

fig = plt.figure(figsize = (7,5))    #figsize是图片的大小`
ax1 = fig.add_subplot(1, 1, 1) # ax1是子图的名字`

4. 先画出整体的loss曲线

pl.plot(x,y,'g-',label=u'Dense_Unet(block layer=5)')`
# ‘'g‘'代表“green”,表示画出的曲线是绿色,“-”代表画的曲线是实线,可自行选择,label代表的是图例的名称,一般要在名称前面加一个u,如果名称是中文,会显示不出来,目前还不知道怎么解决。
p2 = pl.plot(x1, y1,'r-', label = u'RCSCA_Net')
pl.legend()
#显示图例
p3 = pl.plot(x2,y2, 'b-', label = u'SCRCA_Net')
pl.legend()
pl.xlabel(u'iters')
pl.ylabel(u'loss')
plt.title('Compare loss for different models in training')

画出曲线如图:


5. 显示放大的部分曲线

# plot the box
tx0 = 0
tx1 = 10000
#设置想放大区域的横坐标范围
ty0 = 0.000
ty1 = 0.12
#设置想放大区域的纵坐标范围
sx = [tx0,tx1,tx1,tx0,tx0]
sy = [ty0,ty0,ty1,ty1,ty0]
pl.plot(sx,sy,"purple")
axins = inset_axes(ax1, width=1.5, height=1.5, loc='right')
#loc是设置小图的放置位置,可以有"lower left,lower right,upper right,upper left,upper #,center,center left,right,center right,lower center,center"
axins.plot(x1,y1 , color='red', ls='-')
axins.plot(x2,y2 , color='blue', ls='-')
axins.axis([0,20000,0.000,0.12])
plt.savefig("train_results_loss.png")
pl.show
#pl.show()也可以

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现基于KNN算法的笔迹识别功能详解

Python实现基于KNN算法的笔迹识别功能详解

本文实例讲述了Python实现基于KNN算法的笔迹识别功能。分享给大家供大家参考,具体如下: 需要用到: Numpy库 Pandas库 手写识别数据 点击此处本站下载。...

windows下Virtualenvwrapper安装教程

windows下Virtualenvwrapper安装教程

windows下安装Virtualenvwrapper 我们可以使用Virtualenvwrapper来方便地管理python虚拟环境,但是在windows上安装的时候.....直接 i...

浅谈pyqt5中信号与槽的认识

一、介绍 信号(Signal)和槽(Slot)是Qt中的核心机制,也是PyQt变成中对象之间进行通信的机制 在pyqt5中,每一个QObject对象和pyqt中所有继承自QWidge...

3个用于数据科学的顶级Python库

3个用于数据科学的顶级Python库

Python有许多吸引力,如效率,代码可读性和速度,使其成为数据科学爱好者的首选编程语言。Python通常是希望升级其应用程序功能的数据科学家和机器学习专家的首选。 由于其广泛的用途,P...

Python 加密的实例详解

 Python 加密的实例详解 hashlib支持md5,sha1,sha256,sha384,sha512,用法和md5一样  import hashlib...