在python中利用numpy求解多项式以及多项式拟合的方法

yipeiwu_com6年前Python基础

构建一个二阶多项式:x^2 - 4x + 3

多项式求解

>>> p = np.poly1d([1,-4,3])   #二阶多项式系数
>>> p(0)                  #自变量为0时多项式的值
3
>>> p.roots              #多项式的根
array([3., 1.])
>>> p(p.roots)              #多项式根处的值
array([0., 0.])
>>> p.order                  #多项式的阶数
2
>>> p.coeffs                #多项式的系数
array([ 1, -4, 3])
>>>

多项式拟合

用三阶多项式去拟合

import matplotlib.pyplot as plt
import numpy as np

n_dot = 20
n_order = 3     #阶数

x = np.linspace(0,1,n_dot)             #[0,1]之间创建20个点
y = np.sqrt(x) + 0.2*np.random.rand(n_dot)
p = np.poly1d(np.polyfit(x,y,n_order))      #拟合并构造出一个3次多项式
print(p.coeffs)                #输出拟合的系数,顺序从高阶低阶

#画出拟合出来的多项式所表达的曲线以及原始的点
t = np.linspace(0,1,200)
plt.plot(x,y,'ro',t,p(t),'-')
plt.show()

以上这篇在python中利用numpy求解多项式以及多项式拟合的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Django框架中的对象列表视图使用示例

direct_to_template 毫无疑问是非常有用的,但Django通用视图最有用的地方是呈现数据库中的数据。 因为这个应用实在太普遍了,Django带有很多内建的通用视图来帮助你...

Pytorch之finetune使用详解

finetune分为全局finetune和局部finetune。首先介绍一下局部finetune步骤: 1.固定参数 for name, child in model.named...

pandas DataFrame 行列索引及值的获取的方法

pandas DataFrame是二维的,所以,它既有列索引,又有行索引 上一篇里只介绍了列索引: import pandas as pd df = pd.DataFrame({'...

关于sys.stdout和print的区别详解

关于sys.stdout和print的区别详解

一、sys.stdout的形式就是print的一种默认输出格式,等于print "%VALUE%" print函数是对sys.stdout的高级封装,看下print函数的解释 Pri...

PyTorch里面的torch.nn.Parameter()详解

PyTorch里面的torch.nn.Parameter()详解

在看过很多博客的时候发现了一个用法self.v = torch.nn.Parameter(torch.FloatTensor(hidden_size)),首先可以把这个函数理解为类型转换...