基于sklearn实现Bagging算法(python)

yipeiwu_com6年前Python基础

本文使用的数据类型是数值型,每一个样本6个特征表示,所用的数据如图所示:

图中A,B,C,D,E,F列表示六个特征,G表示样本标签。每一行数据即为一个样本的六个特征和标签。

实现Bagging算法的代码如下:

from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.preprocessing import StandardScaler
import csv
from sklearn.cross_validation import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
data=[]
traffic_feature=[]
traffic_target=[]
csv_file = csv.reader(open('packSize_all.csv'))
for content in csv_file:
 content=list(map(float,content))
 if len(content)!=0:
  data.append(content)
  traffic_feature.append(content[0:6])//存放数据集的特征
  traffic_target.append(content[-1])//存放数据集的标签
print('data=',data)
print('traffic_feature=',traffic_feature)
print('traffic_target=',traffic_target)
scaler = StandardScaler() # 标准化转换
scaler.fit(traffic_feature) # 训练标准化对象
traffic_feature= scaler.transform(traffic_feature) # 转换数据集
feature_train, feature_test, target_train, target_test = train_test_split(traffic_feature, traffic_target, test_size=0.3,random_state=0)
tree=DecisionTreeClassifier(criterion='entropy', max_depth=None)
# n_estimators=500:生成500个决策树
clf = BaggingClassifier(base_estimator=tree, n_estimators=500, max_samples=1.0, max_features=1.0, bootstrap=True, bootstrap_features=False, n_jobs=1, random_state=1)
clf.fit(feature_train,target_train)
predict_results=clf.predict(feature_test)
print(accuracy_score(predict_results, target_test))
conf_mat = confusion_matrix(target_test, predict_results)
print(conf_mat)
print(classification_report(target_test, predict_results))

运行结果如图所示:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Django项目中包含多个应用时对url的配置方法

Django项目中包含多个应用时对url的配置方法

一个Django工程中多数情况下会存在多个应用, 如何针对多个应用的url进行配置呢, 有以下两种方案: 1、在Django工程的urls.py中针对每个应用分别配置不同的url路径 2...

python3+PyQt5实现自定义分数滑块部件

python3+PyQt5实现自定义分数滑块部件

本文通过Python3+PyQt5实现自定义部件–分数滑块。它既能支持键盘也支持鼠标,使用物理(视口)坐标通过绘制方式显示。 #!/usr/bin/env python3 impo...

基于h5py的使用及数据封装代码

1. h5py简单介绍 h5py文件是存放两类对象的容器,数据集(dataset)和组(group),dataset类似数组类的数据集合,和numpy的数组差不多。group是像文件夹一...

解决django-xadmin列表页filter关联对象搜索问题

环境:xadmin-for-python3 python3.5.2 django1.9.12 问题描述:Product ProductSku两个实体,ProductSku FK外键关联P...

让python同时兼容python2和python3的8个技巧分享

python邮件列表里有人发表言论说“python3在10内都无法普及”。在我看来这样的观点有些过于悲观,python3和python2虽然不兼容,但他们之间差别并没很多人想像的那么大。...