python多线程共享变量的使用和效率方法

yipeiwu_com6年前Python基础

python多线程可以使任务得到并发执行,但是有时候在执行多次任务的时候,变量出现“意外”。

import threading,time
n=0
start=time.time()
def b1(num):
 global n
 n=n+num
 n=n-num
def b2(num):
 for i in range(1000000):
 b1(num)
t1=threading.Thread(target=b2,args=(5,))
t2=threading.Thread(target=b2,args=(8,))
t1.start()
t2.start()
t1.join()
t2.join()
end=time.time()
print(n)
print(end-start)

执行结果:

18
0.7520430088043213

可见变量n从0变成了18,用时是0.75s,原因是计算机系统计算类似n=n+num是分两步计算的,先计算n+num的值放进内存中,然后再把计算的值赋值给n,正是这个间隙导致了变量出现“意外”。

这时候可以使用threading.Lock来把线程中的变量锁定,使用完再释放!

import threading,time
n=0
lock=threading.Lock()
start=time.time()
def b1(num):
 global n
 n=n+num
 n=n-num
def b2(num):
 for i in range(1000000):
  lock.acquire()#等待获取或获取修改变量的权限,并霸占它们
  b1(num)
  lock.release()#释放霸占的变量
t1=threading.Thread(target=b2,args=(5,))
t2=threading.Thread(target=b2,args=(8,))
t1.start()
t2.start()
t1.join()
t2.join()
end=time.time()
print(n)
print(end-start)

执行结果:

0
3.335190773010254

虽然变量的值正确了,但慢了很多倍,效率大大的打折扣,多线程的优势也没凸显出来。

所以尽量使用局部变量来代替全局变量在线程中使用,这样可以避免效率的问题。

以上这篇python多线程共享变量的使用和效率方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

pytorch训练imagenet分类的方法

1、imagenet数据准备: a、下载数据集 b、提取training data: mkdir train && mv ILSVRC2012_img_train.tar train...

Python实现对百度云的文件上传(实例讲解)

Python实现对百度云的文件上传(实例讲解)

环境准备 python3.6 PyCharm 2017.1.3 Windows环境 框架搭建 selenium3.6 安装方法: pip install selenium 实现步骤: 一...

浅谈python脚本设置运行参数的方法

浅谈python脚本设置运行参数的方法

正在学习Django框架,在运行manage.py的时候需要给它设置要监听的端口,就是给这个脚本一个运行参数。教学视频中,是在Eclipse中设置的运行参数,网上Django大部分都是在...

深入分析在Python模块顶层运行的代码引起的一个Bug

然后我们在Interactive Python prompt中测试了一下: >>> import subprocess >>> subproc...

python学习必备知识汇总

一、变量 1.变量 •指在程序执行过程中,可变的量; •定义一个变量,就会伴随有3个特征,分别是内存ID、数据类型和变量值。 •其他语言运行完之前,一...