使用TensorFlow实现简单线性回归模型

yipeiwu_com6年前Python基础

本文使用TensorFlow实现最简单的线性回归模型,供大家参考,具体内容如下

线性拟合y=2.7x+0.6,代码如下:

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
 
n = 201 # x点数
X = np.linspace(-1, 1, n)[:,np.newaxis] # 等差数列构建X,[:,np.newaxis]这个是shape,这一行构建了一个n维列向量([1,n]的矩阵)
noise = np.random.normal(0, 0.5, X.shape) # 噪声值,与X同型
Y = X*2.7 + 0.6 + noise # Y
 
xs = tf.placeholder(tf.float32, [None, 1]) # 下面两行是占位符tf.placeholder(dtype, shape)
ys = tf.placeholder(tf.float32, [None, 1])
 
w = tf.Variable(1.1) # 这两行是weight变量,bias变量,括号中是初始值
b = tf.Variable(0.2)
 
ypredict = tf.add(w*xs,b) # 根据 w, b 产生的预测值
 
loss = tf.reduce_sum(tf.pow(ys-ypredict,2.0))/n # 损失函数,tf.reduce_sum()按某一维度元素求和,默认为按列
 
optimizer = tf.train.GradientDescentOptimizer(0.01).minimize(loss) # 梯度下降优化器,0.01学习率,最小化losss
 
init = tf.global_variables_initializer() # 初始化所有变量
 
with tf.Session() as sess: 
 sess.run(init) # 运行初始化 
 for i in range (1000): # 迭代1000次 
  sess.run(optimizer, feed_dict = {xs:X,ys:Y}) # 运行优化器,梯度下降用到loss,计算loss需要xs, ys所以后面需要feed_dict 
  if i%50==0: # 每隔50次迭代输出w,b,loss
     # 下面sess.run(w),sess.run(b)里面没有feed_dict是因为打印w,b不需要xs,ys,而打印loss需要 
     print ("w:",sess.run(w),"\t b:", sess.run(b), "\t loss:", sess.run(loss,feed_dict={xs:X,ys:Y})) 
  
 plt.plot(X,X*sess.run(w)+sess.run(b)) # 运行迭代之后绘制拟合曲线,这需要在sess里面运行是因为要用到w,b 
 plt.scatter(X,Y) # 绘制被拟合数据(散点) 
 plt.show() # 绘制图像

结果:

w: 1.1106868  b: 0.2086223 loss: 1.2682248
w: 1.5626049  b: 0.4772562 loss: 0.7024503
w: 1.8849733  b: 0.57508457 loss: 0.47280872
w: 2.1149294  b: 0.61071056 loss: 0.36368176
w: 2.278966  b: 0.6236845 loss: 0.30917725
w: 2.3959787  b: 0.6284093 loss: 0.2815788
w: 2.4794474  b: 0.6301298 loss: 0.26755357
w: 2.5389886  b: 0.63075644 loss: 0.26041925
w: 2.5814607  b: 0.6309848 loss: 0.2567894
w: 2.611758  b: 0.6310678 loss: 0.25494233
w: 2.6333694  b: 0.6310981 loss: 0.25400248
w: 2.6487865  b: 0.631109  loss: 0.2535242
w: 2.659784  b: 0.63111293 loss: 0.25328085
w: 2.6676288  b: 0.6311139 loss: 0.25315702
w: 2.6732242  b: 0.6311139 loss: 0.25309405
w: 2.6772156  b: 0.6311139 loss: 0.25306198
w: 2.6800632  b: 0.6311139 loss: 0.25304565
w: 2.6820953  b: 0.6311139 loss: 0.25303733
w: 2.6835444  b: 0.6311139 loss: 0.25303313
w: 2.684578  b: 0.6311139 loss: 0.25303096

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

详解Python3除法之真除法、截断除法和下取整对比

概述 在Python3中,数学运算中的除法被分为两种,分别是“真除法”,即无论任何类型相除的结果都会保留小数点,和我们实际的数学运算结果一致,而“截断除法”,则是无论任何类型相除的结果...

python发送多人邮件没有展示收件人问题的解决方法

背景: 工作过程中需要对现有的机器、服务做监控,当服务出现问题后,邮件通知对应的人 问题: 使用python 2.7自带的email库来进行邮件的发送,但是发送后没有展示收件人列表内容...

python的常见命令注入威胁

ah!其实没有标题说的那么严重! 不过下面可是我们开发产品初期的一些血淋淋的案例,更多的安全威胁可以看看北北同学的《python hack》PPT,里面提及了不只命令执行的威胁,那些都是...

啥是佩奇?使用Python自动绘画小猪佩奇的代码实例

啥是佩奇?使用Python自动绘画小猪佩奇的代码实例

最近社会猪可是火遍了大江南北,不蹭下热度可对不起它。见过手画的佩奇,见过用代码画的吗? 没有?那就来看我大显身手。 用python的turtle库来画小猪佩奇。 有人问:turtle难不...

目前最全的python的就业方向

目前最全的python的就业方向

Python是一门面向对象的编程语言,编译速度超快,从诞生到现在已经25个年头了。它具有丰富和强大的库,常被称为“胶水语言”,能够把用其他语言编写的各种模块(尤其是C/C++)很轻松地联...