python plotly绘制直方图实例详解

yipeiwu_com6年前Python基础

计算数值出现的次数

import cufflinks as cf
cf.go_offline()
import numpy as np
import pandas as pd

set_slippage_avg_cost = [22.01, 20.98, 17.11, 9.06, 9.4, 3.65, 19.65, 7.01, 11.21, 10.3, 5.1, 23.98, 12.03, 8.13, 8.07, 9.28, 3.93, 4.23, 18.6, 8.22, 7.85, 5.39, 29.4, 43.96, 6.12, 15.03, 2.68, 14.25, 7.9, 2.22, 15.74, 8.83, 8.18, 7.21, 30.38,25.46, 8.53, 8.05, 11.04, 24.95, 5.19, 6.8, 8.19, 5.44, 21.05, 7.06, 6.67, 18.61, 5.44, 2.9]

no_slippage_avg_cost = [22.04,21.01,17.13,9.07,9.41,3.65,19.67,7.02,11.22,10.31,5.11,24.01,12.04,8.14,8.08,9.29,3.93,4.24,18.62,8.23,7.86,5.4,29.44,44.01,6.13,15.05,2.68,14.27,7.91,2.22, 15.76, 8.84, 8.19, 7.22, 30.42, 25.49, 8.54, 8.06, 11.05, 24.98, 5.2, 6.81, 8.2, 5.45, 21.08, 7.07, 6.68,18.63,5.45,2.9]

diff = (np.array(no_slippage_avg_cost) - np.array(set_slippage_avg_cost)) / np.array(set_slippage_avg_cost)

pd.Series(diff).iplot(kind='histogram', bins=100, title='(np.array(no_slippage_avg_cost) - np.array(set_slippage_avg_cost)) / np.array(set_slippage_avg_cost)')

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python常用数据重复项处理方法

python常用数据重复项处理方法

在数据的处理过程中,一般都需要进行数据清洗工作,如数据集是否存在重复,是否存在缺失,数据是否具有完整性和一致性,数据中是否存在异常值等.发现诸如此类的问题都需要针对性地处理,下面我们一起...

Python的网络编程库Gevent的安装及使用技巧

安装(以CentOS为例) gevent依赖libevent和greenlet: 1.安装libevent 直接yum install libevent 然后配置python的安装 2....

Python基于smtplib实现异步发送邮件服务

基于smtplib包制作而成,但在实践中发现一个不知道算不算是smtplib留的一个坑,在网络断开的情况下发送邮件时会抛出一个socket.gaierror的异常,但是smtplib中并...

对Python使用mfcc的两种方式详解

对Python使用mfcc的两种方式详解

1、Librosa import librosa filepath = "/Users/birenjianmo/Desktop/learn/librosa/mp3/in.wav"...

Python随机生成均匀分布在单位圆内的点代码示例

Python随机生成均匀分布在单位圆内的点代码示例

Python有一随机函数可以产生[0,1)区间内的随机数,但是如果我们想生成随机分布在单位圆上的,那么我们可以首先生成随机分布在单位圆边上的点,然后随机调整每个点距离原点的距离,但是我们...