Python 画出来六维图

yipeiwu_com5年前Python基础


来自维基百科

我们的大脑通常最多能感知三维空间,超过三维就很难想象了。尽管是三维,理解起来也很费劲,所以大多数情况下都使用二维平面。

不过,我们仍然可以绘制出多维空间,今天就来用 Python 的 plotly 库绘制下三维到六维的图,看看长什么样。

数据我们使用一份来自 UCI 的真实汽车数据集,该数据集包括 205 个样本和 26 个特征,从中选择 6 个特征来绘制图形:

基础工作

安装好 plotly 包:

pip install plotly

加载数据集(文末会提供):

import pandas as pd 
data = pd.read_csv("cars.csv")

下面我们先绘制基础的二维图表,使用两个 RPM 和 Speed 两个特征即可:

绘制 2-D 图

代码实现如下:

import plotly 
import plotly.graph_objs as go 
 
#绘制散点图 
fig1 = go.Scatter(x=data['curb-weight'], 
         y=data['price'], 
         mode='markers') 
 
#绘制布局 
mylayout = go.Layout(xaxis=dict(title="curb-weight"), 
           yaxis=dict( title="price")) 
 
#绘图 html 
plotly.offline.plot({"data": [fig1], 
           "layout": mylayout}, 
           auto_open=True)

保存为 html 文件打开可以生成交互界面,也可以保存为 png 图片。

下面增加特征来绘制三维图。

绘制 3-D 图

可以使用 plotly 的 plot.Scatter3D 方法绘制三维图:

代码实现如下:

fig1 = go.Scatter3d(x=data['curb-weight'], 
          y=data['horsepower'], 
          z=data['price'], 
          marker=dict(opacity=0.9, 
                reversescale=True, 
                colorscale='Blues', 
                size=5), 
          line=dict (width=0.02), 
          mode='markers') 
 
mylayout = go.Layout(scene=dict(xaxis=dict( title="curb-weight"), 
                yaxis=dict( title="horsepower"), 
                zaxis=dict(title="price")),) 
 
plotly.offline.plot({"data": [fig1], 
           "layout": mylayout}, 
           auto_open=True, 
           filename=("3DPlot.html"))

如何绘制更高维度的图呢?显然无法通过扩展坐标轴的形式,不过有个小技巧就是制造一个虚拟维度,可以用不同颜色、形状大小、形状类别来入手。这样就可以显示第四个维度了。

绘制 4-D 图

下面我们将第四个变量——车辆油耗(city-mpg)添加到原先的三维图中,用颜色深浅表示,这样就绘制出了四维图。可以看到当其他三个指标(马力、车身重量、车价格)越高时:车辆油耗是越少的。

绘制 5-D 图

基于这样的思想,我们还可以通过修改圆形大小再增加一个维度——发动机尺寸(engine-size)变成五维图:

我们仍然可以比较容易地地发现:车越贵,发动机尺寸越大这样的规律。

绘制 6-D 图

接着还可以通过更改形状的方式增加第六个维度——车门数,圆形表示四车门,方形表示两车门。通常两个车门的都是昂贵的豪华跑车,在图中也可以看出方形主要集中在价格比较高的区域。

这样我们就从普通的二维图扩展到了高维图,当然还可以继续拓展,不过分辨起来会越来越困难。

源码下载地址

原文链接:

https://medium.com/@prasadostwal/multi-dimension-plots-in-python-from-2d-to-6d-9a2bf7b8cc74

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

使用Python的Treq on Twisted来进行HTTP压力测试

从事API相关的工作很有挑战性,在高峰期保持系统的稳定及健壮性就是其中之一,这也是我们在Mailgun做很多压力测试的原因。 这么久以来,我们已经尝试了很多种方法,从简单的ApacheB...

Python字典常见操作实例小结【定义、添加、删除、遍历】

本文实例总结了Python字典常见操作。分享给大家供大家参考,具体如下: 简单的字典: 字典就是键值对key-value组合。 #字典 键值对组合 alien_0 ={'color...

Python requests发送post请求的一些疑点

Python requests发送post请求的一些疑点

前言 在Python爬虫中,使用requests发送请求,访问指定网站,是常见的做法。一般是发送GET请求或者POST请求,对于GET请求没有什么好说的,而发送POST请求,有很多朋友不...

opencv与numpy的图像基本操作

opencv与numpy的图像基本操作

1. 像素基本操作 1.1 读取、修改像素 可以通过[行,列]坐标来访问像素点数据,对于多通道数据,返回一个数组,包含所有通道的值,对于单通道数据(如gray),返回指定坐标的值,也可...

Python3中在Anaconda环境下安装basemap包

Python3中在Anaconda环境下安装basemap包

Basemap是matplotlib子包,也是python中最常用、最方便的地理数据可视化工具之一。 在中端输入pip list先查看是否有jupyter,一般安装了Anaconda都会...