python 标准差计算的实现(std)

yipeiwu_com6年前Python基础

numpy.std() 求标准差的时候默认是除以 n 的,即是有偏的,np.std无偏样本标准差方式为加入参数 ddof = 1;

pandas.std() 默认是除以n-1 的,即是无偏的,如果想和numpy.std() 一样有偏,需要加上参数ddof=0 ,即pandas.std(ddof=0) ;DataFrame的describe()中就包含有std();

demo:

>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.std(a, ddof = 1)
3.0276503540974917
>>> np.sqrt(((a - np.mean(a)) ** 2).sum() / (a.size - 1))
3.0276503540974917
>>> np.sqrt(( a.var() * a.size) / (a.size - 1))
3.0276503540974917

PS:numpy中标准差std的神坑

我们用Matlab作为对比。计算标准差,得到:

>> std([1,2,3])
ans =
   1

然而在numpy中:

>>> np.std([1,2,3])
0.81649658092772603

什么鬼!这么简单的都能出错?原因在于,np.std有这么一个参数:

ddof : int, optional
Means Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. By default ddof is zero.

因此,想要正确调用,必须使ddof=1:

>>> np.std([1,2,3], ddof=1)
1.0

而且,这一特性还影响到了许多基于numpy的包。比如scikit-learn里的StandardScaler。想要正确调用,只能自己手动设置参数:

ss = StandardScaler()
ss.mean_ = np.mean(X, axis=0)
ss.scale_ = np.std(X, axis=0, ddof=1)
X_norm = ss.transform(X)

当X数据量较大时无所谓,当X数据量较小时则要尤为注意。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

对于Python的Django框架使用的一些实用建议

前言:随着Django1.4第二个候选版的发布,虽然还不支持Python3,但Django团队已经在着手计划中,据官方博客所说,Django1.5将会试验性的支持python3。 Dja...

Numpy中stack(),hstack(),vstack()函数用法介绍及实例

1.stack()函数 函数原型为:stack(arrays,axis=0),arrays可以传数组和列表。axis的含义我下面会讲解,我们先来看个例子,然后我会分析输出结果。 im...

对python cv2批量灰度图片并保存的实例讲解

如下所示: import cv2 #循环灰度图片并保存 def grayImg(): for x in range(1,38): #读取图片 img = cv2.imrea...

DRF跨域后端解决之django-cors-headers的使用

在使用django-rest-framework开发项目的时候我们总是避免不了跨域的问题,因为现在大多数的项目都是前后端分离,前后端项目部署在不同的web服务器上,因为我们是后端程序员,...

Python操作Sql Server 2008数据库的方法详解

Python操作Sql Server 2008数据库的方法详解

本文实例讲述了Python操作Sql Server 2008数据库的方法。分享给大家供大家参考,具体如下: 最近由于公司的一个项目需要,需要使用Sql Server 2008数据库,开发...