Python使用Pandas对csv文件进行数据处理的方法

yipeiwu_com5年前Python基础

今天接到一个新的任务,要对一个140多M的csv文件进行数据处理,总共有170多万行,尝试了导入本地的MySQL数据库进行查询,结果用Navicat导入直接卡死....估计是XAMPP套装里面全默认配置的MySQL性能不给力,又尝试用R搞一下吧结果发现光加载csv文件就要3分钟左右的时间,相当不给力啊,翻了翻万能的知乎发现了Python下的一个神器包:Pandas(熊猫们?),加载这个140多M的csv文件两秒钟就搞定,后面的分类汇总等操作也都是秒开,太牛逼了!记录一下这次数据处理的过程:

使用Python3.6.4环境(对中文支持比较好),安装Pandas包

pip install pandas

基本使用:

import pandas as pd
import numpy as np #进行具体的sum,count等计算时候要用到的
df=pd.read_csv('d:/snp/nh23.csv') #这里绝对路径一定要用/,windows下也是如此,不加参数默认csv文件首行为标题行
df.head() #查看引入的csv文件前5行数据
df[“播种面积”] #查看指定列,后面跟[:5]查看前5行数据

df[“调查对象代码”].str[:6] #获取指定列前6位字符串

df["ADDR"]=df["调查对象代码"].str[:6] #将上一行处理后的6位地址码作为新列ADDR插入

gp=df.groupby(["ADDR","代码"])["播种面积"].sum() #根据ADDR和代码进行分组后对播种面积列进行sum求和计算

pv=df.pivot_table(["播种面积"],index="ADDR",columns="代码",margins=True,aggfunc=np.sum,fill_value=0) #数据透视图,对播种面积列进行汇总计算,index为行,columns为列,margins=True增加一个全部行汇总,aggfunc=np.sum透视图中对播种面积值进行sum计算,这里np是开头import的numpy as np,fill_value=0对空值进行0替换,否则没有数据会显示NaN

pv.to_csv("d:/snp/test.csv") #写入csv文件

总结

以上所述是小编给大家介绍的Python使用Pandas对csv文件进行数据处理的方法,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对【听图阁-专注于Python设计】网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

相关文章

python实现多线程网页下载器

本文为大家分享了python实现的一个多线程网页下载器,供大家参考,具体内容如下 这是一个有着真实需求的实现,我的用途是拿它来通过 HTTP 方式向服务器提交游戏数据。把它放上来也是想大...

python实现textrank关键词提取

用python写了一个简单版本的textrank,实现提取关键词的功能。 import numpy as np import jieba import jieba.posseg...

python中列表和元组的区别

如果有了解过python中的列表和元组,你可能会知道相对于列表,元组是不可变的,也就是说元组中的数据不能随意更改。除了列表是用中括号表示而元组是用小括号表示之外,这两种数据类型好像并没有...

Django框架用户注销功能实现方法分析

本文实例讲述了Django框架用户注销功能实现方法。分享给大家供大家参考,具体如下: HttpResponse()里有个delete_cookie()方法专门用来删除cookie 我们到...

Python脚本获取操作系统版本信息

Python脚本获取操作系统版本信息

查看系统版本信息是一件家常便饭的事情,有时候需要将版本信息录入到资产管理系统中,如果每次手动的去查询这些信息再录入系统那么是一件令人呢头疼的事情,如果采用脚本去完成这件事情,那么情况就有...