pandas DataFrame行或列的删除方法的实现示例

yipeiwu_com6年前Python基础

此文我们继续围绕DataFrame介绍相关操作。

平时在用DataFrame时候,删除操作用的不太多,基本是从源DataFrame中筛选数据,组成一个新的DataFrame再继续操作。

1. 删除DataFrame某一列

这里我们继续用上一节产生的DataFrame来做例子,原DataFrame如下:

我们使用drop()函数,此函数有一个列表形参labels,写的时候可以加上labels=[xxx],也可以不加,列表内罗列要删除行或者列的名称,默认是行名称,如果要删除列,则要增加参数axis=1,操作如下:

#pd.__version__ =='0.18.0'
#drop columns
test_dict_df.drop(['id'],axis=1)
#test_dict_df.drop(columns=['id']) # official operation, maybe my pandas version needs update!

结果如下,对于上面的代码,官方教程文档中给出了columns=['name'],但是在我测试的时候会报错,我用的python3,pandas版本为0.18,可能是pandas版本太老的缘故。

这里注意输出的结果是执行此方法的结果,而不是输出test_dict_df的结果,是因为方法默认的并不是在本身执行操作,这时候输出test_dict_df输出的仍然是没有进行删除操作的原DataFrame,如果你想在原DataFrame上进行操作,需要加上inplace=True,等价于在操作完再赋值给本身:

test_dict_df.drop(['id'],axis=1,inplace=True)
# test_dict_df = test_dict_df.drop(['id'],axis=1)

2. 删除DataFrame某一行

删除某一行,在上面删除列操作的时候也稍有提及,如果不加axis=1,则默认按照行号进行删除,例如要删除第0行和第4行:

test_dict_df.drop([0,4])

同理,你要在源DataFrame上进行操作就得加上inplace参数,否则不会在test_dict_df上改动。

当然,如果你的DataFrame有很多级,你可以加上level参数,这里就不多赘述了。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

numpy添加新的维度:newaxis的方法

numpy添加新的维度:newaxis的方法

numpy中包含的newaxis可以给原数组增加一个维度 np.newaxis放的位置不同,产生的新数组也不同 一维数组 x = np.random.randint(1, 8, si...

pandas数据框,统计某列数据对应的个数方法

pandas数据框,统计某列数据对应的个数方法

现在要解决的问题如下: 我们有一个数据的表 第7列有许多数字,并且是用逗号分隔的,数字又有一个对应的关系: 我们要得到第7列对应关系的统计,就是每一行的第7列a有多少个,b有多少个...

Python之数据序列化(json、pickle、shelve)详解

什么是序列化 什么是序列化,把程序中的对象或者变量,从内存中转换为可存储或可传输的过程称为序列化。在 Python 中,这个过程称为 pickling,在其他语言中也被称为 seria...

Python调用C语言的方法【基于ctypes模块】

本文实例讲述了Python调用C语言的方法。分享给大家供大家参考,具体如下: Python中的ctypes模块可能是Python调用C方法中最简单的一种。ctypes模块提供了和C语言兼...

Python利用scapy实现ARP欺骗的方法

Python利用scapy实现ARP欺骗的方法

一、实验原理。 本次用代码实现的是ARP网关欺骗,通过发送错误的网关映射关系导致局域网内其他主机无法正常路由。使用scapy中scapy.all模块的ARP、sendp、Ether等函...