Python 使用 docopt 解析json参数文件过程讲解

yipeiwu_com5年前Python基础

1. 背景

在深度学习的任务中,通常需要比较复杂的参数以及输入输出配置,比如需要不同的训练data,不同的模型,写入不同的log文件,输出到不同的文件夹以免混淆输出

常用的parser.add()方法非常占用代码空间,而且输入输出配置无法通过文件更改,只能通过命令行参数改变。

docopt 库提供了一个非常优雅的命令行解析工具,这边只介绍其中解析文件参数

2. 安装

pip install docopt
import docopt
import json
  

3. 使用

docopt 由两部分组成,第一部分是解析部分,通过“”“ -”“”(一段类似注释的双引号表示),这一部分必不可少。

"""
Usage: train <json_file>
"""

上面解析部分的指令很简单,输入应为:

python test.py config.json

第二部分是main 函数:

if __name__ == "__main__":
  args = docopt.docopt(__doc__)
  args = json.load(open(args["<json_file>"]))
  print('==>Params')
  for key in args.keys():
    print('\t{}:{}\n'.format(key,args[key]))
  train(args) 

我将 config.json 设置为:

{
 "dataset":    "human_science",
 "length":     1000,
 "model":     "CNN",
 "log_dir":    "./logs/",
 "output_dir":   "./output/",
 "output_prefix": "human_science_CNN",
 
 "lr":0.01
}

命令行的输出应为:

成功将参数传入train()函数

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python数据可视化:顶级绘图库plotly详解

Python数据可视化:顶级绘图库plotly详解

有史以来最牛逼的绘图工具,没有之一 plotly是现代平台的敏捷商业智能和数据科学库,它作为一款开源的绘图库,可以应用于Python、R、MATLAB、Excel、JavaScript...

Python装饰器decorator用法实例

本文实例讲述了Python装饰器decorator用法。分享给大家供大家参考。具体分析如下: 1. 闭包(closure) 闭包是Python所支持的一种特性,它让在非global sc...

wxPython色环电阻计算器

本文实例为大家分享了wxPython色环电阻计算器的具体代码,供大家参考,具体内容如下 import wx # 导入wxPython class MyFrame(wx.Frame):...

python中的不可变数据类型与可变数据类型详解

前言 python与C/C++不一样,它的变量使用有自己的特点,当初学python的时候,一定要记住“一切皆为对象,一切皆为对象的引用”这句话,其实这个特点类似于JAVA,所以在pyth...

详解Django项目中模板标签及模板的继承与引用(网站中快速布置广告)

详解Django项目中模板标签及模板的继承与引用(网站中快速布置广告)

Django项目中模板标签及模板的继承与引用 常见模板标签 {% static %} {% for x in range(x) %}{% endfor %} 循环的序号{% forl...