在Pytorch中使用样本权重(sample_weight)的正确方法

yipeiwu_com6年前Python基础

step:

1.将标签转换为one-hot形式。

2.将每一个one-hot标签中的1改为预设样本权重的值

即可在Pytorch中使用样本权重。

eg:

对于单个样本:loss = - Q * log(P),如下:

P = [0.1,0.2,0.4,0.3]
Q = [0,0,1,0]
loss = -Q * np.log(P)

增加样本权重则为loss = - Q * log(P) *sample_weight

P = [0.1,0.2,0.4,0.3]
Q = [0,0,sample_weight,0]
loss_samle_weight = -Q * np.log(P)

在pytorch中示例程序

train_data = np.load(open('train_data.npy','rb'))
train_labels = []
for i in range(8):
  train_labels += [i] *100
train_labels = np.array(train_labels)
train_labels = to_categorical(train_labels).astype("float32")
sample_1 = [random.random() for i in range(len(train_data))]
for i in range(len(train_data)):
  floor = i / 100
  train_labels[i][floor] = sample_1[i]
train_data = torch.from_numpy(train_data) 
train_labels = torch.from_numpy(train_labels) 
dataset = dataf.TensorDataset(train_data,train_labels) 
trainloader = dataf.DataLoader(dataset, batch_size=batch_size, shuffle=True)

对应one-target的多分类交叉熵损失函数如下:

def my_loss(outputs, targets):
  
  output2 = outputs - torch.max(outputs, 1, True)[0]
 
 
  P = torch.exp(output2) / torch.sum(torch.exp(output2), 1,True) + 1e-10
 
 
  loss = -torch.mean(targets * torch.log(P))
 
 
  return loss

以上这篇在Pytorch中使用样本权重(sample_weight)的正确方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python2.6.6如何升级到python2.7.14

python2.6.6如何升级到python2.7.14

其实网上有很多关于python2.6.6 升级到python2.7的文章,但是我对比这些类似的文章升级之后,发现其中有错误的地方,于是决定还是自己写一个真正的升级过程。 我的虚拟机里安装...

解决tensorflow测试模型时NotFoundError错误的问题

错误代码如下: NotFoundError (see above for traceback): Unsuccessful TensorSliceReader constructor...

python 发送和接收ActiveMQ消息的实例

ActiveMQ是java开发的消息中间件服务。可以支持多种协议(AMQP,MQTT,OpenWire,Stomp),默认的是OpenWire。而python与ActiveMQ的通信使用...

python求列表交集的方法汇总

本文实例汇总了python求列表交集的方法。分享给大家供大家参考。具体方法如下: 交集对于给定的两个集合A 和 集合B 的交集是指含有所有既属于 A 又属于 B 的元素,而没有其他元素的...

Python书单 不将就

Python书单 不将就

每天都有小伙伴询问Python的书,哎呀,动力所致,书单来了。7本,涵盖范围蛮大的。Python热持续中,入门计算机首选语言。 python游戏编程快速上手 (斯维加特著) (点击,直...