Pytorch卷积层手动初始化权值的实例

yipeiwu_com6年前Python基础

由于研究关系需要自己手动给卷积层初始化权值,但是好像博客上提到的相关文章比较少(大部分都只提到使用nn.init里的按照一定分布初始化方法),自己参考了下Pytorch的官方文档,发现有两种方法吧。

所以mark下。

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np

# 第一一个卷积层,我们可以看到它的权值是随机初始化的
w=torch.nn.Conv2d(2,2,3,padding=1)
print(w.weight)


# 第一种方法
print("1.使用另一个Conv层的权值")
q=torch.nn.Conv2d(2,2,3,padding=1) # 假设q代表一个训练好的卷积层
print(q.weight) # 可以看到q的权重和w是不同的
w.weight=q.weight # 把一个Conv层的权重赋值给另一个Conv层
print(w.weight)

# 第二种方法
print("2.使用来自Tensor的权值")
ones=torch.Tensor(np.ones([2,2,3,3])) # 先创建一个自定义权值的Tensor,这里为了方便将所有权值设为1
w.weight=torch.nn.Parameter(ones) # 把Tensor的值作为权值赋值给Conv层,这里需要先转为torch.nn.Parameter类型,否则将报错
print(w.weight)

效果预览

以上这篇Pytorch卷积层手动初始化权值的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python SVD压缩图像的实现代码

python SVD压缩图像的实现代码

前言 利用SVD是可以对图像进行压缩的,其核心原因在于,图像的像素之间具有高度的相关性。 代码 # -*- coding: utf-8 -*- ''' author@cclplu...

python opencv3实现人脸识别(windows)

本文实例为大家分享了python人脸识别程序,大家可进行测试 #coding:utf-8 import cv2 import sys from PIL import Ima...

Python使用pandas对数据进行差分运算的方法

如下所示: >>> import pandas as pd >>> import numpy as np # 生成模拟数据 >>&g...

Python工程师面试题 与Python基础语法相关

希望通过本文能够帮助大家顺顺利利通过Python面试,之后还有一篇关于Python Web相关的文章欢迎大家阅读。 1、Python中pass语句的作用是什么? pass语句什么也不做,...

rabbitmq(中间消息代理)在python中的使用详解

rabbitmq(中间消息代理)在python中的使用详解

在之前的有关线程,进程的博客中,我们介绍了它们各自在同一个程序中的通信方法。但是不同程序,甚至不同编程语言所写的应用软件之间的通信,以前所介绍的线程、进程队列便不再适用了;此种情况便只能...