pytorch 共享参数的示例

yipeiwu_com5年前Python基础

在很多神经网络中,往往会出现多个层共享一个权重的情况,pytorch可以快速地处理权重共享问题。

例子1:

class ConvNet(nn.Module):
  def __init__(self):
    super(ConvNet, self).__init__()
    self.conv_weight = nn.Parameter(torch.randn(3, 3, 5, 5))
 
  def forward(self, x):
    x = nn.functional.conv2d(x, self.conv_weight, bias=None, stride=1, padding=2, dilation=1, groups=1)
    x = nn.functional.conv2d(x, self.conv_weight.transpose(2, 3).contiguous(), bias=None, stride=1, padding=0, dilation=1,
                 groups=1)
    return x

上边这段程序定义了两个卷积层,这两个卷积层共享一个权重conv_weight,第一个卷积层的权重是conv_weight本身,第二个卷积层是conv_weight的转置。注意在gpu上运行时,transpose()后边必须加上.contiguous()使转置操作连续化,否则会报错。

例子2:

class LinearNet(nn.Module):
  def __init__(self):
    super(LinearNet, self).__init__()
    self.linear_weight = nn.Parameter(torch.randn(3, 3))
 
  def forward(self, x):
    x = nn.functional.linear(x, self.linear_weight)
    x = nn.functional.linear(x, self.linear_weight.t())
 
    return x

这个网络实现了一个双层感知器,权重同样是一个parameter的本身及其转置。

例子3:

class LinearNet2(nn.Module):
  def __init__(self):
    super(LinearNet2, self).__init__()
    self.w = nn.Parameter(torch.FloatTensor([[1.1,0,0], [0,1,0], [0,0,1]]))
 
  def forward(self, x):
    x = x.mm(self.w)
    x = x.mm(self.w.t())
    return x

这个方法直接用mm函数将x与w相乘,与上边的网络效果相同。

以上这篇pytorch 共享参数的示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python中用Spark模块的使用教程

 在日常的编程中,我经常需要标识存在于文本文档中的部件和结构,这些文档包括:日志文件、配置文件、定界的数据以及格式更自由的(但还是半结构化的)报表格式。所有这些文档都拥有它们自...

python安装pywin32clipboard的操作方法

要使用到剪贴板的方法,搜索到有两个包可以用,pyperclip,和pywin32clipboard,pyperclip在3.5版本中不能够import,可以手动下载安装,未查到原因;py...

Python实现利用163邮箱远程关电脑脚本

学了一个礼拜Python之后写的,代码很粗糙,只是为了完成利用163邮箱远程关电脑功能。直接把代码发上来吧。要执行的话得先安装一些模块,看import语句。 十月初写的,写完这个之后就没...

Python实现猜数字小游戏

Python初学者小游戏:猜数字 游戏逻辑:电脑随机生成一个数字,然后玩家猜数字,电脑提示猜的数字大了还是小了,供玩家缩小数字范围,达到既定次数后,玩家失败。若在次数内猜对,玩家获胜。...

在Python中使用base64模块处理字符编码的教程

在Python中使用base64模块处理字符编码的教程

Base64是一种用64个字符来表示任意二进制数据的方法。 用记事本打开exe、jpg、pdf这些文件时,我们都会看到一大堆乱码,因为二进制文件包含很多无法显示和打印的字符,所以,如果要...