对Pytorch中nn.ModuleList 和 nn.Sequential详解

yipeiwu_com5年前Python基础

简而言之就是,nn.Sequential类似于Keras中的贯序模型,它是Module的子类,在构建数个网络层之后会自动调用forward()方法,从而有网络模型生成。而nn.ModuleList仅仅类似于pytho中的list类型,只是将一系列层装入列表,并没有实现forward()方法,因此也不会有网络模型产生的副作用。

需要注意的是,nn.ModuleList接受的必须是subModule类型,例如:

nn.ModuleList(
      [nn.ModuleList([Conv(inp_dim + j * increase, oup_dim, 1, relu=False, bn=False) for j in range(5)]) for i in
       range(nstack)])

其中,二次嵌套的list内部也必须额外使用一个nn.ModuleList修饰实例化,否则会无法识别类型而报错!

摘录自

nn.ModuleList is just like a Python list. It was designed to store any desired number of nn.Module's. It may be useful, for instance, if you want to design a neural network whose number of layers is passed as input:

class LinearNet(nn.Module):
 def __init__(self, input_size, num_layers, layers_size, output_size):
   super(LinearNet, self).__init__()
 
   self.linears = nn.ModuleList([nn.Linear(input_size, layers_size)])
   self.linears.extend([nn.Linear(layers_size, layers_size) for i in range(1, self.num_layers-1)])
   self.linears.append(nn.Linear(layers_size, output_size)

nn.Sequential allows you to build a neural net by specifying sequentially the building blocks (nn.Module's) of that net. Here's an example:

class Flatten(nn.Module):
 def forward(self, x):
  N, C, H, W = x.size() # read in N, C, H, W
  return x.view(N, -1)
 
simple_cnn = nn.Sequential(
      nn.Conv2d(3, 32, kernel_size=7, stride=2),
      nn.ReLU(inplace=True),
      Flatten(), 
      nn.Linear(5408, 10),
     )

In nn.Sequential, the nn.Module's stored inside are connected in a cascaded way. For instance, in the example that I gave, I define a neural network that receives as input an image with 3 channels and outputs 10 neurons. That network is composed by the following blocks, in the following order: Conv2D -> ReLU -> Linear layer. Moreover, an object of type nn.Sequential has a forward() method, so if I have an input image x I can directly call y = simple_cnn(x) to obtain the scores for x. When you define an nn.Sequential you must be careful to make sure that the output size of a block matches the input size of the following block. Basically, it behaves just like a nn.Module

On the other hand, nn.ModuleList does not have a forward() method, because it does not define any neural network, that is, there is no connection between each of the nn.Module's that it stores. You may use it to store nn.Module's, just like you use Python lists to store other types of objects (integers, strings, etc). The advantage of using nn.ModuleList's instead of using conventional Python lists to store nn.Module's is that Pytorch is “aware” of the existence of the nn.Module's inside an nn.ModuleList, which is not the case for Python lists. If you want to understand exactly what I mean, just try to redefine my class LinearNet using a Python list instead of a nn.ModuleList and train it. When defining the optimizer() for that net, you'll get an error saying that your model has no parameters, because PyTorch does not see the parameters of the layers stored in a Python list. If you use a nn.ModuleList instead, you'll get no error.

以上这篇对Pytorch中nn.ModuleList 和 nn.Sequential详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现获取汉字偏旁部首的方法示例【测试可用】

Python实现获取汉字偏旁部首的方法示例【测试可用】

本文实例讲述了Python实现获取汉字偏旁部首的方法。分享给大家供大家参考,具体如下: 功能介绍 传入一个汉字,返回其偏旁部首 字典 分为本地字典与网络字典,本地词典来自精简版的新华字典...

python实现随机调用一个浏览器打开网页

前两天总结了一下python爬虫 使用真实浏览器打开网页的两种方法总结 但那仅仅是总结一下而已,今天本文来实战演练一下 依然使用的是 webbrowser 这个模块 来调用浏览器 关于的...

python Opencv将图片转为字符画

python Opencv将图片转为字符画

做了个Python的小练习,网上有人是利用PIL中的Image来实现的,觉得Opencv库挺方便的,于是利用Opencv库来实现了一下,代码如下: # -*- coding: utf...

利用python在大量数据文件下删除某一行的例子

python修改大数据文件时,如果全加载到内存中,可能会导致内存溢出。因此可借用如下方法,将分件分段读取修改。 with open('file.txt', 'r') as old_f...

python双端队列原理、实现与使用方法分析

本文实例讲述了python双端队列原理、实现与使用方法。分享给大家供大家参考,具体如下: 双端队列 双端队列(deque,全名double-ended queue),是一种具有队列和栈的...