Pytorch加载部分预训练模型的参数实例

yipeiwu_com5年前Python基础

前言

自从从深度学习框架caffe转到Pytorch之后,感觉Pytorch的优点妙不可言,各种设计简洁,方便研究网络结构修改,容易上手,比TensorFlow的臃肿好多了。对于深度学习的初学者,Pytorch值得推荐。今天主要主要谈谈Pytorch是如何加载预训练模型的参数以及代码的实现过程。

直接加载预选脸模型

如果我们使用的模型和预训练模型完全一样,那么我们就可以直接加载别人的模型,还有一种情况,我们在训练自己模型的过程中,突然中断了,但只要我们保存了之前的模型的参数也可以使用下面的代码直接加载我们保存的模型继续训练,不用从头开始。

model=DPN(*args, **kwargs)
model.load_state_dict(torch.load("DPN.pth"))

这样的加载方式是基于Pytorch使用的模型存储方法:

torch.save(DPN.state_dict(), "DPN.pth")

加载部分预训练模型参数

其实大多数时候我们根据自己的任物所提出的模型是在一些公开模型的基础上改变而来,其中公开模型的参数我们没有必要在从头开始训练,只要加载其训练好的模型参数即可,这样有助于提高训练的准确率和我们模型的泛化能力。

 model = DPN(num_init_features=64, k_R=96, G=32, k_sec=(3,4,20,3), inc_sec=(16,32,24,128), num_classes=1,decoder=args.decoder)
 http = {'url': 'http://data.lip6.fr/cadene/pretrainedmodels/dpn92_extra-b040e4a9b.pth'}
 pretrained_dict=model_zoo.load_url(http['url'])
 model_dict = model.state_dict()
 pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}#filter out unnecessary keys 
 model_dict.update(pretrained_dict)
 model.load_state_dict(model_dict)
 model = torch.nn.DataParallel(model).cuda()

因为需要删除预训练模型中不匹配的的键,也就是层的名字。

以上这篇Pytorch加载部分预训练模型的参数实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python numpy 一维数组转变为多维数组的实例

python numpy 一维数组转变为多维数组的实例

如下所示: import numpy new_list = [i for i in range(9)] numpy.array(new_list).reshape(3,3) 借助n...

python通过pil将图片转换成黑白效果的方法

本文实例讲述了python通过pil将图片转换成黑白效果的方法。分享给大家供大家参考。具体分析如下: pil功能强大,convert方法可以轻易的将图片转换,下面的代码可以将图片转换成黑...

windows10下python3.5 pip3安装图文教程

windows10下python3.5 pip3安装图文教程

最近Google官方的开发者博客中宣布新的版本Tensorflow(0.12)将增加对Windows的支持,想试着windows10下学习tensorflow,之前已经安装anacond...

python生成器,可迭代对象,迭代器区别和联系

python生成器,可迭代对象,迭代器区别和联系

生成器,可迭代对象,迭代器之间究竟是什么关系? 用一幅图来概括: 1.生成器 定义生成器 方式一: //区别于列表生成式 gen = [x*x for x in range(...

Python hashlib加密模块常用方法解析

这篇文章主要介绍了Python hashlib加密模块常用方法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 主要用于对字符串的加...