关于pytorch多GPU训练实例与性能对比分析

yipeiwu_com6年前Python基础

以下实验是我在百度公司实习的时候做的,记录下来留个小经验。

多GPU训练

cifar10_97.23 使用 run.sh 文件开始训练

cifar10_97.50 使用 run.4GPU.sh 开始训练

在集群中改变GPU调用个数修改 run.sh 文件

nohup srun --job-name=cf23 $pt --gres=gpu:2 -n1 bash cluster_run.sh $cmd 2>&1 1>>log.cf50_2GPU &

修改 –gres=gpu:2 即可

Python 文件代码修改

parser.add_argument('--batch_size', type=int, default=96*2, help='batch size')

修改对应 batch size 大小,保证每块GPU获得等量的训练数据,因为batch_size的改变会影响训练精度

最容易实现的单GPU训练改为多GPU训练代码

单GPU:logits, logits_aux = model(input)

多GPU:

if torch.cuda.device_count()>1:#判断是否能够有大于一的GPU资源可以调用

   logits, logits_aux =nn.parallel.data_parallel(model,input)

  else:

   logits, logits_aux = model(input)

缺点:不是性能最好的实现方式

优点:代码嵌入适应性强,不容易报错

性能分析

该图为1到8GPU训练cifar10——97.23网络的实验对比

可以看到单核训练600轮需要53小时、双核训练600轮需要26小时、四核16、六核14、八核13。

在可运行7小时的GPU上的对比实验:单核跑完83轮、双核跑完163轮、四核跑完266轮

结论:性价比较高的是使用4~6核GPU进行训练,但是多GPU训练对于单GPU训练有所差异,训练的准确率提升会有所波动,目前发现的是负面的影响。

以上这篇关于pytorch多GPU训练实例与性能对比分析就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python 两个列表的差集、并集和交集实现代码

Python 两个列表的差集、并集和交集实现代码

①差集 方法一: if __name__ == '__main__': a_list = [{'a' : 1}, {'b' : 2}, {'c' : 3}, {'d' : 4},...

Python编程实现生成特定范围内不重复多个随机数的2种方法

Python编程实现生成特定范围内不重复多个随机数的2种方法

本文实例讲述了Python编程实现生成特定范围内不重复多个随机数的2种方法。分享给大家供大家参考,具体如下: 在近期进行的一个实验中,需要将数据按一定比例随机分割为两个部分。这一问题的核...

python 阶乘累加和的实例

阶乘:也是数学里的一种术语;阶乘指从1乘以2乘以3乘以4一直乘到所要求的数;在表达阶乘时,就使用“!”来表示。如h阶乘,就表示为h!;阶乘一般很难计算,因为积都很大。 提问:求1+2!+...

kafka监控获取指定topic的消息总量示例

我就废话不多说了,直接 上代码吧! import kafka.api.PartitionOffsetRequestInfo; import kafka.common.TopicAnd...

Python实现计算字符串中出现次数最多的字符示例

Python实现计算字符串中出现次数最多的字符示例

本文实例讲述了Python实现计算字符串中出现次数最多的字符。分享给大家供大家参考,具体如下: 1. 看了网上挺多写的方法都没达到我所需要的效果,我干脆自己写了个方法共享给大家 ee...