PyTorch中常用的激活函数的方法示例

yipeiwu_com6年前Python基础

神经网络只是由两个或多个线性网络层叠加,并不能学到新的东西,简单地堆叠网络层,不经过非线性激活函数激活,学到的仍然是线性关系。

但是加入激活函数可以学到非线性的关系,就具有更强的能力去进行特征提取。

构造数据

import torch
import torch.nn.functional as F
from torch.autograd import Variable

import matplotlib.pyplot as plt

x = torch.linspace(-5, 5, 200)  # 构造一段连续的数据
x = Variable(x)	 # 转换成张量
x_np = x.data.numpy()	# 换成 numpy array, 出图时用

Relu

表达式:


代码:

y_relu = F.relu(x).data.numpy()
plt.plot(x_np, y_relu, c='red', label='relu')
plt.ylim((-1, 5))
plt.legend(loc='best')

plt.show()

形状如图:

在这里插入图片描述

Sigmoid

表达式:

代码:

y_sigmoid = F.sigmoid(x).data.numpy()
plt.plot(x_np, y_sigmoid, c='red', label='sigmoid')
plt.ylim((-0.2, 1.2))
plt.legend(loc='best')

plt.show()

形状如图:

在这里插入图片描述

Tanh

表达式:

代码:

y_tanh = F.tanh(x).data.numpy()
plt.plot(x_np, y_tanh, c='red', label='tanh')
plt.ylim((-1.2, 1.2))
plt.legend(loc='best')

plt.show()

形状如图:

在这里插入图片描述

Softplus

表达式:


代码:

y_softplus = F.softplus(x).data.numpy()
plt.plot(x_np, y_softplus, c='red', label='softplus')
plt.ylim((-0.2, 6))
plt.legend(loc='best')

plt.show()

形状如图:

在这里插入图片描述

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python列表推导式入门学习解析

这篇文章主要介绍了python列表推导式入门学习解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一.什么是推导式 推导式是从一个...

django重新生成数据库中的某张表方法

今天有碰到这种情况,数据库中有张表没办法通过migration来更改, migrate时报 django.db.utils.OperationalError: (1050, “Table...

pycharm 使用心得(六)进行简单的数据库管理

例如: 1.创建,修改和删除数据表,字段,索引,主键,外键等。 2.提供table editor来进行数据操作 3.提供console来运行sql命令 4.提供数据导出功能 数据库创建方...

Python的Django框架中的Context使用

一旦你创建一个 Template 对象,你可以用 context 来传递数据给它。 一个context是一系列变量和它们值的集合。 context在Django里表现为 Context...

python通过文件头判断文件类型

对于提供上传的服务器,需要对上传的文件进行过滤。 本文为大家提供了python通过文件头判断文件类型的方法,避免不必要的麻烦。 分享代码如下 import struct # 支...