PyTorch中常用的激活函数的方法示例

yipeiwu_com5年前Python基础

神经网络只是由两个或多个线性网络层叠加,并不能学到新的东西,简单地堆叠网络层,不经过非线性激活函数激活,学到的仍然是线性关系。

但是加入激活函数可以学到非线性的关系,就具有更强的能力去进行特征提取。

构造数据

import torch
import torch.nn.functional as F
from torch.autograd import Variable

import matplotlib.pyplot as plt

x = torch.linspace(-5, 5, 200)  # 构造一段连续的数据
x = Variable(x)	 # 转换成张量
x_np = x.data.numpy()	# 换成 numpy array, 出图时用

Relu

表达式:


代码:

y_relu = F.relu(x).data.numpy()
plt.plot(x_np, y_relu, c='red', label='relu')
plt.ylim((-1, 5))
plt.legend(loc='best')

plt.show()

形状如图:

在这里插入图片描述

Sigmoid

表达式:

代码:

y_sigmoid = F.sigmoid(x).data.numpy()
plt.plot(x_np, y_sigmoid, c='red', label='sigmoid')
plt.ylim((-0.2, 1.2))
plt.legend(loc='best')

plt.show()

形状如图:

在这里插入图片描述

Tanh

表达式:

代码:

y_tanh = F.tanh(x).data.numpy()
plt.plot(x_np, y_tanh, c='red', label='tanh')
plt.ylim((-1.2, 1.2))
plt.legend(loc='best')

plt.show()

形状如图:

在这里插入图片描述

Softplus

表达式:


代码:

y_softplus = F.softplus(x).data.numpy()
plt.plot(x_np, y_softplus, c='red', label='softplus')
plt.ylim((-0.2, 6))
plt.legend(loc='best')

plt.show()

形状如图:

在这里插入图片描述

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

最基础的Python的socket编程入门教程

本文介绍使用Python进行Socket网络编程,假设读者已经具备了基本的网络编程知识和Python的基本语法知识,本文中的代码如果没有说明则都是运行在Python 3.4下。 Pyth...

用pytorch的nn.Module构造简单全链接层实例

python版本3.7,用的是虚拟环境安装的pytorch,这样随便折腾,不怕影响其他的python框架 1、先定义一个类Linear,继承nn.Module import tor...

Python实现的概率分布运算操作示例

本文实例讲述了Python实现的概率分布运算操作。分享给大家供大家参考,具体如下: 1. 二项分布(离散) import numpy as np from scipy import...

TensorFlow的权值更新方法

一. MovingAverage权值滑动平均更新 1.1 示例代码: def create_target_q_network(self,state_dim,action_dim,ne...

Python中的pathlib.Path为什么不继承str详解

起步 既然所有路径都可以表示为字符串,为什么 pathlib.Path 不继承 str ? 这个想法的提出在 https://mail.python.org/pipermail...