浅谈pytorch grad_fn以及权重梯度不更新的问题

yipeiwu_com5年前Python基础

前提:我训练的是二分类网络,使用语言为pytorch

Varibale包含三个属性:

data:存储了Tensor,是本体的数据

grad:保存了data的梯度,本事是个Variable而非Tensor,与data形状一致

grad_fn:指向Function对象,用于反向传播的梯度计算之用

在构建网络时,刚开始的错误为:没有可以grad_fn属性的变量。

百度后得知要对需要进行迭代更新的变量设置requires_grad=True ,操作如下:

train_pred = Variable(train_pred.float(), requires_grad=True)`

这样设置之后网络是跑起来了,但是准确率一直没有提升,很明显可以看出网络什么都没学到。

我输出 model.parameters() (网络内部的权重和偏置)查看,发现它的权重并没有更新,一直是同一个值,至此可以肯定网络什么都没学到,还是迭代那里出了问题。

询问同门后发现问题不在这里。

计算loss时,target与train_pred的size不匹配,我以以下操作修改了train_pred,使两者尺寸一致,才导致了上述问题。

  train_pred = model(data)
  train_pred = torch.max(train_pred, 1)[1].data.squeeze()
  train_pred = Variable(train_pred.float(), requires_grad=False)
  train_loss = F.binary_cross_entropy(validation_pred.float(), target)
  train_loss.backward()

对train_pred多次处理后,它已无法正确地反向传播,实际上应该更改target,使其与train_pred size一致。

重点!!!要想loss正确反向传播,应直接将model(data)传入loss函数。

最终修改代码如下:

 for batch_idx, (data, target) in enumerate(train_loader):
  # Get Samples
  label = target.view(target.size(0), 1).long()
  target_onehot = torch.zeros(data.shape[0], args.num_classes).scatter_(1, label, 1)
  data, target_onehot = Variable(data.cuda()), Variable(target_onehot.cuda().float())
  
  model.zero_grad()

  # Predict
  train_pred = model(data)
  train_loss = F.binary_cross_entropy(train_pred, target_onehot)
  train_loss.backward()
  optimizer.step()

以上这篇浅谈pytorch grad_fn以及权重梯度不更新的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

django1.8使用表单上传文件的实现方法

Python下有许多款不同的 Web 框架。Django是重量级选手中最有代表性的一位。许多成功的网站和APP都基于Django。 Django是一个开放源代码的Web应用框架,由Py...

python 图片验证码代码分享

复制代码 代码如下: #coding: utf-8 import Image,ImageDraw,ImageFont,os,string,random,ImageFilter def i...

Python常用内置模块之xml模块(详解)

Python常用内置模块之xml模块(详解)

xml即可扩展标记语言,它可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。从结构上,很像HTML超文本标记语言。但他们被设计的目的是不同的,超文本标记语言...

Python简单I/O操作示例

本文实例讲述了Python简单I/O操作。分享给大家供大家参考,具体如下: 文件: poem = ''' hello world ''' f = file('book.txt', '...

Python3中的2to3转换工具使用示例

python3与python2的还是有诸多的不同,比如说在2中: 复制代码 代码如下: print "Hello,World!"  raw_input()  在...