浅谈pytorch grad_fn以及权重梯度不更新的问题

yipeiwu_com6年前Python基础

前提:我训练的是二分类网络,使用语言为pytorch

Varibale包含三个属性:

data:存储了Tensor,是本体的数据

grad:保存了data的梯度,本事是个Variable而非Tensor,与data形状一致

grad_fn:指向Function对象,用于反向传播的梯度计算之用

在构建网络时,刚开始的错误为:没有可以grad_fn属性的变量。

百度后得知要对需要进行迭代更新的变量设置requires_grad=True ,操作如下:

train_pred = Variable(train_pred.float(), requires_grad=True)`

这样设置之后网络是跑起来了,但是准确率一直没有提升,很明显可以看出网络什么都没学到。

我输出 model.parameters() (网络内部的权重和偏置)查看,发现它的权重并没有更新,一直是同一个值,至此可以肯定网络什么都没学到,还是迭代那里出了问题。

询问同门后发现问题不在这里。

计算loss时,target与train_pred的size不匹配,我以以下操作修改了train_pred,使两者尺寸一致,才导致了上述问题。

  train_pred = model(data)
  train_pred = torch.max(train_pred, 1)[1].data.squeeze()
  train_pred = Variable(train_pred.float(), requires_grad=False)
  train_loss = F.binary_cross_entropy(validation_pred.float(), target)
  train_loss.backward()

对train_pred多次处理后,它已无法正确地反向传播,实际上应该更改target,使其与train_pred size一致。

重点!!!要想loss正确反向传播,应直接将model(data)传入loss函数。

最终修改代码如下:

 for batch_idx, (data, target) in enumerate(train_loader):
  # Get Samples
  label = target.view(target.size(0), 1).long()
  target_onehot = torch.zeros(data.shape[0], args.num_classes).scatter_(1, label, 1)
  data, target_onehot = Variable(data.cuda()), Variable(target_onehot.cuda().float())
  
  model.zero_grad()

  # Predict
  train_pred = model(data)
  train_loss = F.binary_cross_entropy(train_pred, target_onehot)
  train_loss.backward()
  optimizer.step()

以上这篇浅谈pytorch grad_fn以及权重梯度不更新的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现的双色球生成功能示例

Python实现的双色球生成功能示例

本文实例讲述了Python实现的双色球生成功能。分享给大家供大家参考,具体如下: 最近学习Python的Random函数,就顺手写一个随机数的双色球程序,开发环境:python2.7 ,...

python发送邮件脚本

本文实例为大家分享了python发送邮件的具体代码,供大家参考,具体内容如下 #!/usr/bin/env python # -*- coding: utf-8 -*- impo...

Python自动生成代码 使用tkinter图形化操作并生成代码框架

Python自动生成代码 使用tkinter图形化操作并生成代码框架

背景 在写代码过程中,如果有频繁重复性的编码操作,或者可以Reuse的各类代码,可以通过Python写一个脚本,自动生成这类代码,就不用每次手写、或者copy了。 比如新建固定的代码框架...

Python实现的插入排序,冒泡排序,快速排序,选择排序算法示例

本文实例讲述了Python实现的插入排序,冒泡排序,快速排序,选择排序算法。分享给大家供大家参考,具体如下: #!/usr/bin/python # coding:utf-8 #直接...

Python数据结构之哈夫曼树定义与使用方法示例

Python数据结构之哈夫曼树定义与使用方法示例

本文实例讲述了Python数据结构之哈夫曼树定义与使用方法。分享给大家供大家参考,具体如下: HaffMan.py #coding=utf-8 #考虑权值的haff曼树查找效率并非最...