python 画出使用分类器得到的决策边界

yipeiwu_com6年前Python基础

获取数据集,并画图代码如下:

import numpy as np
from sklearn.datasets import make_moons
import matplotlib.pyplot as plt
# 手动生成一个随机的平面点分布,并画出来
np.random.seed(0)
X, y = make_moons(200, noise=0.20)
plt.scatter(X[:,0], X[:,1], s=40, c=y, cmap=plt.cm.Spectral)
plt.show()

得到图如下:


定义决策边界函数:

# 咱们先顶一个一个函数来画决策边界
def plot_decision_boundary(pred_func):
 
 # 设定最大最小值,附加一点点边缘填充
 x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
 h = 0.01
 
 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
 
 # 用预测函数预测一下
 Z = pred_func(np.c_[xx.ravel(), yy.ravel()])
 Z = Z.reshape(xx.shape)
 
 # 然后画出图
 plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
 plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Spectral)

定义分类函数,并画出决策边界图代码如下:

from sklearn.linear_model import LogisticRegressionCV
#咱们先来瞄一眼逻辑斯特回归对于它的分类效果
clf = LogisticRegressionCV()
clf.fit(X, y)
 
# 画一下决策边界
plot_decision_boundary(lambda x: clf.predict(x))
plt.title("Logistic Regression")
plt.show()

画图如下:


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python文件和目录操作方法大全(含实例)

一、python中对文件、文件夹操作时经常用到的os模块和shutil模块常用方法。1.得到当前工作目录,即当前Python脚本工作的目录路径: os.getcwd()2.返回指定目录下...

python检测IP地址变化并触发事件

IoT PoC项目中需要展示视频采集源进行wifi切换后(表明视频采集源端发生了移动),接收端观看到的视频的流畅度,以及当接收端进行移动时,检测视频的流畅度,故需要一个模块周期性地探测本...

django模型层(model)进行建表、查询与删除的基础教程

django模型层(model)进行建表、查询与删除的基础教程

前言 在django的框架设计中采用了mtv模型,即Model,template,viewer Model相对于传统的三层或者mvc框架来说就相当对数据处理层,它主要负责与数据的交互,在...

Python自定义函数实现求两个数最大公约数、最小公倍数示例

Python自定义函数实现求两个数最大公约数、最小公倍数示例

本文实例讲述了Python自定义函数实现求两个数最大公约数、最小公倍数。分享给大家供大家参考,具体如下: 1. 求最小公倍数的算法: 最小公倍数  =  两个整数的乘...

python发送伪造的arp请求

复制代码 代码如下:#!/usr/bin/env pythonimport socket s = socket.socket(socket.AF_PACKET, socket.SOCK_...