Python实现朴素贝叶斯的学习与分类过程解析
概念简介:
朴素贝叶斯基于贝叶斯定理,它假设输入随机变量的特征值是条件独立的,故称之为“朴素”。简单介绍贝叶斯定理:
乍看起来似乎是要求一个概率,还要先得到额外三个概率,有用么?其实这个简单的公式非常贴切人类推理的逻辑,即通过可以观测的数据,推测不可观测的数据。举个例子,也许你在办公室内不知道外面天气是晴天雨天,但是你观测到有同事带了雨伞,那么可以推断外面八成在下雨。
若X 是要输入的随机变量,则Y 是要输出的目标类别。对X 进行分类,即使求的使P(Y|X) 最大的Y值。若X 为n 维特征变量 X = {A1, A2, …..An} ,若输出类别集合为Y = {C1, C2, …. Cm} 。
X 所属最有可能类别 y = argmax P(Y|X), 进行如下推导:
朴素贝叶斯的学习
有公式可知,欲求分类结果,须知如下变量:
各个类别的条件概率,
输入随机变量的特质值的条件概率
示例代码:
import copy class native_bayes_t: def __init__(self, character_vec_, class_vec_): """ 构造的时候需要传入特征向量的值,以数组方式传入 参数1 character_vec_ 格式为 [("character_name",["","",""])] 参数2 为包含所有类别的数组 格式为["class_X", "class_Y"] """ self.class_set = {} # 记录该类别下各个特征值的条件概率 character_condition_per = {} for character_name in character_vec_: character_condition_per[character_name[0]] = {} for character_value in character_name[1]: character_condition_per[character_name[0]][character_value] = { 'num' : 0, # 记录该类别下该特征值在训练样本中的数量, 'condition_per' : 0.0 # 记录该类别下各个特征值的条件概率 } for class_name in class_vec: self.class_set[class_name] = { 'num' : 0, # 记录该类别在训练样本中的数量, 'class_per' : 0.0, # 记录该类别在训练样本中的先验概率, 'character_condition_per' : copy.deepcopy(character_condition_per), } #print("init", character_vec_, self.class_set) #for debug def learn(self, sample_): """ learn 参数为训练的样本,格式为 [ { 'character' : {'character_A':'A1'}, #特征向量 'class_name' : 'class_X' #类别名称 } ] """ for each_sample in sample: character_vec = each_sample['character'] class_name = each_sample['class_name'] data_for_class = self.class_set[class_name] data_for_class['num'] += 1 # 各个特质值数量加1 for character_name in character_vec: character_value = character_vec[character_name] data_for_character = data_for_class['character_condition_per'][character_name][character_value] data_for_character['num'] += 1 # 数量计算完毕, 计算最终的概率值 sample_num = len(sample) for each_sample in sample: character_vec = each_sample['character'] class_name = each_sample['class_name'] data_for_class = self.class_set[class_name] # 计算类别的先验概率 data_for_class['class_per'] = float(data_for_class['num']) / sample_num # 各个特质值的条件概率 for character_name in character_vec: character_value = character_vec[character_name] data_for_character = data_for_class['character_condition_per'][character_name][character_value] data_for_character['condition_per'] = float(data_for_character['num']) / data_for_class['num'] from pprint import pprint pprint(self.class_set) #for debug def classify(self, input_): """ 对输入进行分类,输入input的格式为 { "character_A":"A1", "character_B":"B3", } """ best_class = '' max_per = 0.0 for class_name in self.class_set: class_data = self.class_set[class_name] per = class_data['class_per'] # 计算各个特征值条件概率的乘积 for character_name in input_: character_per_data = class_data['character_condition_per'][character_name] per = per * character_per_data[input_[character_name]]['condition_per'] print(class_name, per) if per >= max_per: best_class = class_name return best_class character_vec = [("character_A",["A1","A2","A3"]), ("character_B",["B1","B2","B3"])] class_vec = ["class_X", "class_Y"] bayes = native_bayes_t(character_vec, class_vec) sample = [ { 'character' : {'character_A':'A1', 'character_B':'B1'}, #特征向量 'class_name' : 'class_X' #类别名称 }, { 'character' : {'character_A':'A3', 'character_B':'B1'}, #特征向量 'class_name' : 'class_X' #类别名称 }, { 'character' : {'character_A':'A3', 'character_B':'B3'}, #特征向量 'class_name' : 'class_X' #类别名称 }, { 'character' : {'character_A':'A2', 'character_B':'B2'}, #特征向量 'class_name' : 'class_X' #类别名称 }, { 'character' : {'character_A':'A2', 'character_B':'B2'}, #特征向量 'class_name' : 'class_Y' #类别名称 }, { 'character' : {'character_A':'A3', 'character_B':'B1'}, #特征向量 'class_name' : 'class_Y' #类别名称 }, { 'character' : {'character_A':'A1', 'character_B':'B3'}, #特征向量 'class_name' : 'class_Y' #类别名称 }, { 'character' : {'character_A':'A1', 'character_B':'B3'}, #特征向量 'class_name' : 'class_Y' #类别名称 }, ] input_data ={ "character_A":"A1", "character_B":"B3", } bayes.learn(sample) print(bayes.classify(input_data))
总结:
朴素贝叶斯分类实现简单,预测的效率较高
朴素贝叶斯成立的假设是个特征向量各个属性条件独立,建模的时候需要特别注意
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。