python 数据提取及拆分的实现代码

yipeiwu_com5年前Python基础

K线数据提取

#### 原有数据集如下:

依据原有数据集格式,按要求生成新表:

1、每分钟的close数据的第一条、最后一条、最大值及最小值,

2、每分钟vol数据的增长量(每分钟vol的最后一条数据减第一条数据)

3、汇总这些信息生成一个新表

(字段名:[‘time',‘open',‘close',‘high',‘low',‘vol'])

import pandas as pd 
import time 
start=time.time()
df=pd.read_csv('data.csv')
df=df.drop('id',axis=1)    #删除id列 
df1=pd.DataFrame(columns=['time','open','close','high','low','vol'])#新建目标数据表

for i in df.groupby('time'):   #按时间分组
  new_df=pd.DataFrame(columns=['time','open','close','high','low','vol']) #新建空表用于临时转存要求数据
  new_df.time=i[1].time[0:1]  #取每组时间为新表时间
  new_df.open=i[1].close[0:1]  #取每组第一个close数据为新表open数据
  new_df.close=i[1]['close'].iloc[-1]  #取每组最后一个close数据为新表close数据
  new_df.high=i[1]['close'].max()  #取每组close数据最大值为新表hige数据
  new_df.low=i[1]['close'].min()  #取每组close数据最小值为新表low数据
  new_df.vol=i[1]['vol'].iloc[-1] - i[1]['vol'].iloc[0] #用每组vol数据最大值减去最小值为新表vol数据
  df1=pd.concat([new_df,df1],axis=0)  #纵向合并数据到目标数据表
  
df2=df1.sort_values('time')  #按time列值进行排序
df2.reset_index(inplace=True, drop=True)  #重置行索引
print(df2)  #打印目标数据表
stop=time.time()  #查看耗时
print('共计耗时:{}秒'.format(stop-start))

在这里插入图片描述

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python字符串匹配算法KMP实例

本文实例讲述了Python字符串匹配算法KMP。分享给大家供大家参考。具体如下: #!/usr/bin/env python #encoding:utf8 def next(patt...

简单瞅瞅Python vars()内置函数的实现

0.偶然间看到一个奇怪的现象 >>> x = 1 >>> a = var() >>> a['x'] 1 这是啥操作??用h...

python smtplib模块实现发送邮件带附件sendmail

本文实例为大家分享了python smtplib实现发送邮件的具体代码,供大家参考,具体内容如下 #!/usr/bin/env python # -*- coding: UTF-8...

python中global用法实例分析

本文实例讲述了python中global用法。分享给大家供大家参考。具体分析如下: 1、global---将变量定义为全局变量。可以通过定义为全局变量,实现在函数内部改变变量值。 2、一...

python中利用Future对象异步返回结果示例代码

前言 本文主要给大家介绍了关于python中用Future对象异步返回结果的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧。 一个Future是用来表示将来要完...