对Python 中矩阵或者数组相减的法则详解

yipeiwu_com6年前Python基础

最近在做编程练习,发现有些结果的值与答案相差较大,通过分析比较得出结论,大概过程如下:

定义了一个计算损失的函数:

def error(yhat,label):
 yhat = np.array(yhat)
 label = np.array(label)
 error_sum = ((yhat - label)**2).sum()
 return error_sum

主要出现问题的是 yhat - label 部分,要强调的是一定要保证两者维度是相同的!这点很重要,否则就会按照python的广播机制进行运算,举个例子:

a = np.array([1,2,3])
a0 = np.array([[1],[2],[3]])
b = np.array([2,3,5,])
print(b-a)
print(b-a0)

这里a的维度是(3,),因为是由列表转化成的数组(当然不是很推荐这种维度,因为很容易犯错),a0的维度是(3,1),b的维度是(3,),a与b的维度相同,在计算b-a的时候,结果显而易见:

b - a0 的结果:

产生这种结果的原因是因为由于维度不同,在计算的时候将b变为了与a0同样的3行的数组,变化后b的维度变为了(3,3),等同于如下的计算:

b = np.array([[2,3,5],
    [2,3,5],
    [2,3,5]])
a0 = np.array([[1],
    [2],
    [3]])
b - a0

结果仍然为:

以上这篇对Python 中矩阵或者数组相减的法则详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python基础知识点 初识Python.md

Python基础知识点 初识Python.md

Python简介 Python的历史 1989年圣诞节:Guido von Rossum开始写Python语言的编译器。 1991年2月:第一个Python编译器(同时也是解释器)...

python装饰器的特性原理详解

这篇文章主要介绍了python装饰器的特性原理详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 今天发现了装饰器的另一种用法,下面就...

python实现壁纸批量下载代码实例

python实现壁纸批量下载代码实例

项目地址:https://github.com/jrainlau/wallpaper-downloader 前言 好久没有写文章了,因为最近都在适应新的岗位,以及利用闲暇时间学习pyth...

pytorch中交叉熵损失(nn.CrossEntropyLoss())的计算过程详解

pytorch中交叉熵损失(nn.CrossEntropyLoss())的计算过程详解

公式 首先需要了解CrossEntropyLoss的计算过程,交叉熵的函数是这样的: 其中,其中yi表示真实的分类结果。这里只给出公式,关于CrossEntropyLoss的其他详细细...

Python3读取UTF-8文件及统计文件行数的方法

本文实例讲述了Python3读取UTF-8文件及统计文件行数的方法。分享给大家供大家参考。具体实现方法如下: ''''' Created on Dec 21, 2012 Pyth...