对Python 中矩阵或者数组相减的法则详解

yipeiwu_com6年前Python基础

最近在做编程练习,发现有些结果的值与答案相差较大,通过分析比较得出结论,大概过程如下:

定义了一个计算损失的函数:

def error(yhat,label):
 yhat = np.array(yhat)
 label = np.array(label)
 error_sum = ((yhat - label)**2).sum()
 return error_sum

主要出现问题的是 yhat - label 部分,要强调的是一定要保证两者维度是相同的!这点很重要,否则就会按照python的广播机制进行运算,举个例子:

a = np.array([1,2,3])
a0 = np.array([[1],[2],[3]])
b = np.array([2,3,5,])
print(b-a)
print(b-a0)

这里a的维度是(3,),因为是由列表转化成的数组(当然不是很推荐这种维度,因为很容易犯错),a0的维度是(3,1),b的维度是(3,),a与b的维度相同,在计算b-a的时候,结果显而易见:

b - a0 的结果:

产生这种结果的原因是因为由于维度不同,在计算的时候将b变为了与a0同样的3行的数组,变化后b的维度变为了(3,3),等同于如下的计算:

b = np.array([[2,3,5],
    [2,3,5],
    [2,3,5]])
a0 = np.array([[1],
    [2],
    [3]])
b - a0

结果仍然为:

以上这篇对Python 中矩阵或者数组相减的法则详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python接口调用已训练好的caffe模型测试分类方法

python接口调用已训练好的caffe模型测试分类方法

训练好了model后,可以通过python调用caffe的模型,然后进行模型测试的输出。 本次测试主要依靠的模型是在caffe模型里面自带训练好的结构参数:~/caffe/models/...

Python 操作 ElasticSearch的完整代码

Python 操作 ElasticSearch的完整代码

官方文档:https://elasticsearch-py.readthedocs.io/en/master/   1、介绍     python提供了操作ElasticSearch 接...

python xlsxwriter创建excel图表的方法

python xlsxwriter创建excel图表的方法

本文实例为大家分享了python xlsxwriter创建excel图表的具体代码,供大家参考,具体内容如 #coding=utf-8 import xlsxwriter fro...

python解决字典中的值是列表问题的方法

问题:查找一些英文词在哪些小句中出现了,当然是用python来实现,当然是用字典,但是怎么让一个key对应一个 类型为列表的value,直接用列表的append()是不行的,比如dic[...

Python实现KNN邻近算法

简介 邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用...