Python中的相关分析correlation analysis的实现

yipeiwu_com5年前Python基础

相关分析(correlation analysis)

研究两个或两个以上随机变量之间相互依存关系的方向和密切程度的方法。
线性相关关系主要采用皮尔逊(Pearson)相关系数r来度量连续变量之间线性相关强度;
r>0,线性正相关;r<0,线性负相关;
r=0,两个变量之间不存在线性关系,并不代表两个变量之间不存在任何关系。

相关分析函数
DataFrame.corr()
Series.corr(other)

函数说明:
如果由数据框调用corr函数,那么将会计算每个列两两之间的相似度
如果由序列调用corr方法,那么只是该序列与传入的序列之间的相关度

返回值:
DataFrame调用;返回DataFrame

Series调用:返回一个数值型,大小为相关度

import numpy
import pandas
 
data = pandas.read_csv(
  'C:/Users/ZL/Desktop/Python/5.4/data.csv'
)
 
bins = [
  min(data.年龄)-1, 20, 30, 40, max(data.年龄)+1
]
labels = [
  '20岁以及以下', '21岁到30岁', '31岁到40岁', '41岁以上'
]
 
data['年龄分层'] = pandas.cut(
  data.年龄, 
  bins, 
  labels=labels
)
 
ptResult = data.pivot_table(
  values=['年龄'], 
  index=['年龄分层'], 
  columns=['性别'], 
  aggfunc=[numpy.size]
 File "<ipython-input-1-ae921a24967f>", line 25
  aggfunc=[numpy.size]
            ^
SyntaxError: unexpected EOF while parsing
 
 
import numpy
import pandas
 
data = pandas.read_csv(
  'C:/Users/ZL/Desktop/Python/5.4/data.csv'
)
 
bins = [
  min(data.年龄)-1, 20, 30, 40, max(data.年龄)+1
]
labels = [
  '20岁以及以下', '21岁到30岁', '31岁到40岁', '41岁以上'
]
 
data['年龄分层'] = pandas.cut(
  data.年龄, 
  bins, 
  labels=labels
)
 
ptResult = data.pivot_table(
  values=['年龄'], 
  index=['年龄分层'], 
  columns=['性别'], 
  aggfunc=[numpy.size]
)
 
ptResult
Out[4]: 
     size    
      年龄    
性别     女   男
年龄分层        
20岁以及以下  111  1950
21岁到30岁 2903 43955
31岁到40岁  735  7994
41岁以上   567  886

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现简单的列表冒泡排序和反转列表操作示例

本文实例讲述了Python实现简单的列表冒泡排序和反转列表操作。分享给大家供大家参考,具体如下: # -*- coding:utf-8 -*- #! python2 a=[3,4,6...

Flask框架搭建虚拟环境的步骤分析

本文实例讲述了Flask框架搭建虚拟环境的步骤。分享给大家供大家参考,具体如下: 为什么要搭建虚拟环境? 在开发过程中, 当需要使用python的某些工具包/框架时需要联网安装...

Django中Forms的使用代码解析

Django中Forms的使用代码解析

本文研究的主要是Django中Forms的使用,具体如下。 创建文件do.html {% extends 'base.html' %} {% block mainbody %}...

python访问纯真IP数据库的代码

核心代码: #!/usr/bin/env python # -*- coding: utf-8 -*- from bisect import bisect _LIST1,...

用Python操作字符串之rindex()方法的使用

 rindex()方法返回所在的子str被找到的最后一个索引,可选择限制搜索的字符串string[beg:end] 如果没有这样的索引存在,抛出一个异常。 语法 以下是rind...