使用python实现离散时间傅里叶变换的方法

yipeiwu_com6年前Python基础

我们经常使用傅里叶变换来计算数字信号的频谱,进而分析数字信号,离散时间傅里叶变换的公式为:

可是自己动手实现一遍才是最好的学习。

在数字分析里面,傅里叶变换默认等时间间隔采样,不需要时间序列,只需要信号数组即可分析。

分析过程如下:

  • 对于含有 n 个样本值的数字信号序列,根据奈奎斯特采样定律,包含的周期数最大为 n/2,周期数为 0 代表直流分量。所以,当周期数表示为离散的 0,1,2,3…n/2 ,总的数目为 n/2+1
  • 傅里叶变换之后的结果为复数, 下标为 k 的复数 a+b*j 表示时域信号中周期为 N/k 个取样值的正弦波和余弦波的成分的多少, 其中 a 表示 cos 波形的成分, b 表示 sin 波形的成分
  • 首先产生一个长度为 n,一倍周期的 $e^{-jwn} $ (即为 $cos(wn)-jsin(wn) $ )波样本序列.
  • 将数字信号序列中的每一个样本与 1 倍周期的样本波形序列相乘,得到 n 个乘积,将 n 个乘积相加,放入 f[1] 中。
  • 再产生一个长度为 n,两倍周期的 $e^{-jwn} $ (即为 $cos(wn)-jsin(wn) $ )波样本序列,再将数字信号序列中的每一个样本与 2 倍周期的样本波形序列相乘,得到 n 个乘积,将 n 个乘积相加,放入 f[2] 中。依次重复。
  • 对于 0 倍周期,即直流分量来说,可以认为产生的是 0 倍周期的样本波形,重复操作,放入 f[0] 即可。
  • 这样就得到了数字信号序列的傅里叶变换

使用方法:

从以上过程得到数字序列的傅里叶变换之后,如果想要得到真正频谱,还需要做处理:

  • 计算出的每一个频率下的幅值需要除以时间序列的长度,类似求平均的过程
  • 每一个频率下的幅值是一个复数,需要对它求模,而且因为在负频率处也有值,所以需要对于实信号需要乘 2
  • 频率的序列为 0 到采样率的一半,长度为 n/2+1

完整程序:

# 离散时间傅里叶变换的 python 实现
import numpy as np
import math
import pylab as pl
import scipy.signal as signal
import matplotlib.pyplot as plt

sampling_rate=1000
t1=np.arange(0, 10.0, 1.0/sampling_rate)
x1 =np.sin(15*np.pi*t1)

# 傅里叶变换
def fft1(xx):
#   t=np.arange(0, s)
  t=np.linspace(0, 1.0, len(xx))
  f = np.arange(len(xx)/2+1, dtype=complex)
  for index in range(len(f)):
    f[index]=complex(np.sum(np.cos(2*np.pi*index*t)*xx), -np.sum(np.sin(2*np.pi*index*t)*xx))
  return f

# len(x1)
xf=fft1(x1)/len(x1)
freqs = np.linspace(0, sampling_rate/2, len(x1)/2+1)
plt.figure(figsize=(16,4))
plt.plot(freqs,2*np.abs(xf),'r--')

plt.xlabel("Frequency(Hz)")
plt.ylabel("Amplitude($m$)")
plt.title("Amplitude-Frequency curve")

plt.show()

png

plt.figure(figsize=(16,4))
plt.plot(freqs,2*np.abs(xf),'r--')

plt.xlabel("Frequency(Hz)")
plt.ylabel("Amplitude($m$)")
plt.title("Amplitude-Frequency curve")
plt.xlim(0,20)
plt.show()

png

此处实现的是传统的傅里叶变换,这种方法实际已经不用了,现在使用快速傅里叶变换,其实两种是等价的,但是快速傅里叶变换时间复杂度要小很多。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现监控某个服务 服务崩溃即发送邮件报告

前言:最近我们的升级服务器有点不太稳定,经常崩溃掉。然后客户连接不上,跟我们反馈才知道。所以写这个脚本的目的就是为了比客户提前知道升级服务的运行状况,一旦崩溃掉,就能第一时间登录上去,开...

Flask之flask-session的具体使用

flask-session是flask框架的session组件,由于原来flask内置session使用签名cookie保存,该组件则将支持session保存到多个地方,如: re...

Python中对列表排序实例

很多时候,我们需要对List进行排序,Python提供了两个方法,对给定的List L进行排序: 方法1.用List的成员函数sort进行排序 方法2.用built-in函数sorted...

TensorFlow搭建神经网络最佳实践

一、TensorFLow完整样例 在MNIST数据集上,搭建一个简单神经网络结构,一个包含ReLU单元的非线性化处理的两层神经网络。在训练神经网络的时候,使用带指数衰减的学习率设置、使用...

selenium跳过webdriver检测并模拟登录淘宝

selenium跳过webdriver检测并模拟登录淘宝

简介 模拟登录淘宝已经不是一件新鲜的事情了,过去我曾经使用get/post方式进行爬虫,同时也加入IP代理池进行跳过检验,但随着大型网站的升级,采取该策略比较难实现了。因为你使用get/...