Python统计分析模块statistics用法示例

yipeiwu_com5年前Python基础

本文实例讲述了Python统计分析模块statistics用法。分享给大家供大家参考,具体如下:

一 计算平均数函数mean()

>>>import statistics
>>> statistics.mean([1,2,3,4,5,6,7,8,9])#使用整数列表做参数
5
>>> statistics.mean(range(1,10))#使用range对象做参数
5
>>>import fractions
>>> x =[(3,7),(1,21),(5,3),(1,3)]
>>> y =[fractions.Fraction(*item)for item in x]
>>> y
[Fraction(3,7),Fraction(1,21),Fraction(5,3),Fraction(1,3)]
>>> statistics.mean(y)#使用包含分数的列表做参数
Fraction(13,21)
>>>import decimal
>>> x =('0.5','0.75','0.625','0.375')
>>> y = map(decimal.Decimal, x)
>>> statistics.mean(y)
Decimal('0.5625')

二 中位数函数median()、median_low()、median_high()、median_grouped()

>>> statistics.median([1,3,5,7])#偶数个样本时取中间两个数的平均数
4.0
>>> statistics.median_low([1,3,5,7])#偶数个样本时取中间两个数的较小者
3
>>> statistics.median_high([1,3,5,7])#偶数个样本时取中间两个数的较大者
5
>>> statistics.median(range(1,10))
5
>>> statistics.median_low([5,3,7]), statistics.median_high([5,3,7])
(5,5)
>>> statistics.median_grouped([5,3,7])
5.0
>>> statistics.median_grouped([52,52,53,54])
52.5
>>> statistics.median_grouped([1,3,3,5,7])
3.25
>>> statistics.median_grouped([1,2,2,3,4,4,4,4,4,5])
3.7
>>> statistics.median_grouped([1,2,2,3,4,4,4,4,4,5], interval=2)
3.4

三 返回最常见数据或出现次数最多的数据(most common data)的函数mode()

>>> statistics.mode([1,3,5,7])#无法确定出现次数最多的唯一元素
Traceback(most recent call last):
File"<pyshell#27>", line 1,in<module>
statistics.mode([1,3,5,7])#无法确定出现次数最多的唯一元素
File"D:\Python36\lib\statistics.py", line 507,in mode
'no unique mode; found %d equally common values'% len(table)
statistics.StatisticsError: no unique mode; found 4 equally common values
>>> statistics.mode([1,3,5,7,3])
3
>>> statistics.mode(["red","blue","blue","red","green","red","red"])
'red'

四  pstdev(),返回总体标准差(population standard deviation ,the square root of the population variance)

>>> statistics.pstdev([1.5,2.5,2.5,2.75,3.25,4.75])
0.986893273527251
>>> statistics.pstdev(range(20))
5.766281297335398

五 pvariance(),返回总体方差(population variance)或二次矩(second moment)

>>> statistics.pvariance([1.5,2.5,2.5,2.75,3.25,4.75])
0.9739583333333334
>>> x =[1,2,3,4,5,10,9,8,7,6]
>>> mu = statistics.mean(x)
>>> mu
5.5
>>> statistics.pvariance([1,2,3,4,5,10,9,8,7,6], mu)
8.25
>>> statistics.pvariance(range(20))
33.25
>>> statistics.pvariance((random.randint(1,10000)for i in range(30)))
>>>import random
>>> statistics.pvariance((random.randint(1,10000)for i in range(30)))
7117280.4

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程

希望本文所述对大家Python程序设计有所帮助。

相关文章

Python对excel文档的操作方法详解

Python对excel文档的操作方法详解

本文实例讲述了Python对excel文档的操作方法。分享给大家供大家参考,具体如下: pip安装python库:(linux命令行输入不要在idle输入) pip install...

python异步实现定时任务和周期任务的方法

一. 如何调用 def f1(arg1, arg2): print('f1', arg1, arg2) def f2(arg1): print('f2', arg1)...

讲解Python中的递归函数

在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。 举个例子,我们来计算阶乘n! = 1 x 2 x 3 x ... x n,用函数fact(n)表示,...

Python3 安装PyQt5及exe打包图文教程

Python3 安装PyQt5及exe打包图文教程

环境: Python 3.6.4 + Pycharm Professional 2017.3.3 + PyQt5 + PyQt5-tools ① Python 3 安装 Python 3...

对django后台admin下拉框进行过滤的实例

使用django admin 自带后台 admin后台下拉显示的时候需要添加过滤条件, 因为表是自己关联自己,同时还需要过滤掉自己, 需要获取当前对象的id,需要获取obj_id f...