Pytorch中accuracy和loss的计算知识点总结

yipeiwu_com6年前Python基础

这几天关于accuracy和loss的计算有一些疑惑,原来是自己还没有弄清楚。

给出实例

def train(train_loader, model, criteon, optimizer, epoch):
  train_loss = 0
  train_acc = 0
  num_correct= 0
  for step, (x,y) in enumerate(train_loader):

    # x: [b, 3, 224, 224], y: [b]
    x, y = x.to(device), y.to(device)

    model.train()
    logits = model(x)
    loss = criteon(logits, y)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    train_loss += float(loss.item())
    train_losses.append(train_loss)
    pred = logits.argmax(dim=1)
    num_correct += torch.eq(pred, y).sum().float().item()
  logger.info("Train Epoch: {}\t Loss: {:.6f}\t Acc: {:.6f}".format(epoch,train_loss/len(train_loader),num_correct/len(train_loader.dataset)))
  return num_correct/len(train_loader.dataset), train_loss/len(train_loader)

首先这样一次训练称为一个epoch,样本总数/batchsize是走完一个epoch所需的“步数”,相对应的,len(train_loader.dataset)也就是样本总数,len(train_loader)就是这个步数。

那么,accuracy的计算也就是在整个train_loader的for循环中(步数),把每个mini_batch中判断正确的个数累加起来,然后除以样本总数就行了;

而loss的计算有讲究了,首先在这里我们是计算交叉熵,关于交叉熵,也就是涉及到两个值,一个是模型给出的logits,也就是10个类,每个类的概率分布,另一个是样本自身的

label,在Pytorch中,只要把这两个值输进去就能计算交叉熵,用的方法是nn.CrossEntropyLoss,这个方法其实是计算了一个minibatch的均值了,因此累加以后需要除以的步数,也就是

minibatch的个数,而不是像accuracy那样是样本个数,这一点非常重要。

以上就是本次介绍的全部知识点内容,感谢大家对【听图阁-专注于Python设计】的支持。

相关文章

Django实战之用户认证(用户登录与注销)

Django实战之用户认证(用户登录与注销)

上一篇中,我们已经打开了Django自带的用户认证模块,并配置了数据库连接,创建了相应的表,本篇我们将在Django自带的用户认证的基础上,实现自己个性化的用户登录和注销模块。 首先,我...

Python字符串大小写转换拼接删除空白

1.字符串大小写转换 string.title() #将字符串中所有单词的首字母以大写形式显示 string.upper() #将字符串中所有字母转化为大写字母 stri...

Python编程实现使用线性回归预测数据

Python编程实现使用线性回归预测数据

本文中,我们将进行大量的编程——但在这之前,我们先介绍一下我们今天要解决的实例问题。 1) 预测房子价格 房价大概是我们中国每一个普通老百姓比较关心的问题,最近几年保障啊,小编这点微末...

python aiohttp的使用详解

python aiohttp的使用详解

1.aiohttp的简单使用(配合asyncio模块) import asyncio,aiohttp async def fetch_async(url): print(url)...

Python单体模式的几种常见实现方法详解

本文实例讲述了Python单体模式的几种常见实现方法。分享给大家供大家参考,具体如下: 这里python实现的单体模式,参考了:https://stackoverflow.com/que...