Pytorch中accuracy和loss的计算知识点总结

yipeiwu_com6年前Python基础

这几天关于accuracy和loss的计算有一些疑惑,原来是自己还没有弄清楚。

给出实例

def train(train_loader, model, criteon, optimizer, epoch):
  train_loss = 0
  train_acc = 0
  num_correct= 0
  for step, (x,y) in enumerate(train_loader):

    # x: [b, 3, 224, 224], y: [b]
    x, y = x.to(device), y.to(device)

    model.train()
    logits = model(x)
    loss = criteon(logits, y)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    train_loss += float(loss.item())
    train_losses.append(train_loss)
    pred = logits.argmax(dim=1)
    num_correct += torch.eq(pred, y).sum().float().item()
  logger.info("Train Epoch: {}\t Loss: {:.6f}\t Acc: {:.6f}".format(epoch,train_loss/len(train_loader),num_correct/len(train_loader.dataset)))
  return num_correct/len(train_loader.dataset), train_loss/len(train_loader)

首先这样一次训练称为一个epoch,样本总数/batchsize是走完一个epoch所需的“步数”,相对应的,len(train_loader.dataset)也就是样本总数,len(train_loader)就是这个步数。

那么,accuracy的计算也就是在整个train_loader的for循环中(步数),把每个mini_batch中判断正确的个数累加起来,然后除以样本总数就行了;

而loss的计算有讲究了,首先在这里我们是计算交叉熵,关于交叉熵,也就是涉及到两个值,一个是模型给出的logits,也就是10个类,每个类的概率分布,另一个是样本自身的

label,在Pytorch中,只要把这两个值输进去就能计算交叉熵,用的方法是nn.CrossEntropyLoss,这个方法其实是计算了一个minibatch的均值了,因此累加以后需要除以的步数,也就是

minibatch的个数,而不是像accuracy那样是样本个数,这一点非常重要。

以上就是本次介绍的全部知识点内容,感谢大家对【听图阁-专注于Python设计】的支持。

相关文章

在Pandas中DataFrame数据合并,连接(concat,merge,join)的实例

最近在工作中,遇到了数据合并、连接的问题,故整理如下,供需要者参考~ 一、concat:沿着一条轴,将多个对象堆叠到一起 concat方法相当于数据库中的全连接(union all),它...

Python微信企业号开发之回调模式接收微信端客户端发送消息及被动返回消息示例

本文实例讲述了Python微信企业号开发之回调模式接收微信端客户端发送消息及被动返回消息。分享给大家供大家参考,具体如下: 说明:此代码用于接收手机微信端发送的消息 #-*- cod...

Python使用OpenCV进行标定

Python使用OpenCV进行标定

本文结合OpenCV官方样例,对官方样例中的代码进行修改,使其能够正常运行,并对自己采集的数据进行实验和讲解。 一、准备 OpenCV使用棋盘格板进行标定,如下图所示。为了标定相机,我们...

python计算最小优先级队列代码分享

复制代码 代码如下:# -*- coding: utf-8 -*- class Heap(object):     @classmethod &n...

Selenium+Python 自动化操控登录界面实例(有简单验证码图片校验)

Selenium+Python 自动化操控登录界面实例(有简单验证码图片校验)

从最简单的Web浏览器的登录界面开始,登录界面如下: 进行Web页面自动化测试,对页面上的元素进行定位和操作是核心。而操作又是以定位为前提的,因此,对页面元素的定位是进行自动化测试的基...