Pytorch中accuracy和loss的计算知识点总结

yipeiwu_com6年前Python基础

这几天关于accuracy和loss的计算有一些疑惑,原来是自己还没有弄清楚。

给出实例

def train(train_loader, model, criteon, optimizer, epoch):
  train_loss = 0
  train_acc = 0
  num_correct= 0
  for step, (x,y) in enumerate(train_loader):

    # x: [b, 3, 224, 224], y: [b]
    x, y = x.to(device), y.to(device)

    model.train()
    logits = model(x)
    loss = criteon(logits, y)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    train_loss += float(loss.item())
    train_losses.append(train_loss)
    pred = logits.argmax(dim=1)
    num_correct += torch.eq(pred, y).sum().float().item()
  logger.info("Train Epoch: {}\t Loss: {:.6f}\t Acc: {:.6f}".format(epoch,train_loss/len(train_loader),num_correct/len(train_loader.dataset)))
  return num_correct/len(train_loader.dataset), train_loss/len(train_loader)

首先这样一次训练称为一个epoch,样本总数/batchsize是走完一个epoch所需的“步数”,相对应的,len(train_loader.dataset)也就是样本总数,len(train_loader)就是这个步数。

那么,accuracy的计算也就是在整个train_loader的for循环中(步数),把每个mini_batch中判断正确的个数累加起来,然后除以样本总数就行了;

而loss的计算有讲究了,首先在这里我们是计算交叉熵,关于交叉熵,也就是涉及到两个值,一个是模型给出的logits,也就是10个类,每个类的概率分布,另一个是样本自身的

label,在Pytorch中,只要把这两个值输进去就能计算交叉熵,用的方法是nn.CrossEntropyLoss,这个方法其实是计算了一个minibatch的均值了,因此累加以后需要除以的步数,也就是

minibatch的个数,而不是像accuracy那样是样本个数,这一点非常重要。

以上就是本次介绍的全部知识点内容,感谢大家对【听图阁-专注于Python设计】的支持。

相关文章

浅谈django model postgres的json字段编码问题

django model的json字段的编码器不能有效编码诸如uuid,datetime等数据类型,当直接存储此类型的对象到json字段中为抛出编码异常,这时可以通过JSONField字...

python pyinstaller打包exe报错的解决方法

python pyinstaller打包exe报错的解决方法

今天用python 使用pyinstaller打包exe出现错误 环境pyqt5 + python3.6 32位 在导入pyqt5包之前加上如下代码 import sys impo...

Python基于递归算法实现的走迷宫问题

本文实例讲述了Python基于递归算法实现的走迷宫问题。分享给大家供大家参考,具体如下: 什么是递归? 简单地理解就是函数调用自身的过程就称之为递归。 什么时候用到递归? 如果一...

python控制windows剪贴板,向剪贴板中写入图片的实例

如下所示: from ctypes import * import os import win32con,win32clipboard aString=windll.user32....

Python 下载及安装详细步骤

Python 下载及安装详细步骤

安装python分三个步骤: *下载python *安装python *检查是否安装成功 1、下载Python (1)python下载地址https://www.python.org/d...