Pytorch中accuracy和loss的计算知识点总结

yipeiwu_com6年前Python基础

这几天关于accuracy和loss的计算有一些疑惑,原来是自己还没有弄清楚。

给出实例

def train(train_loader, model, criteon, optimizer, epoch):
  train_loss = 0
  train_acc = 0
  num_correct= 0
  for step, (x,y) in enumerate(train_loader):

    # x: [b, 3, 224, 224], y: [b]
    x, y = x.to(device), y.to(device)

    model.train()
    logits = model(x)
    loss = criteon(logits, y)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    train_loss += float(loss.item())
    train_losses.append(train_loss)
    pred = logits.argmax(dim=1)
    num_correct += torch.eq(pred, y).sum().float().item()
  logger.info("Train Epoch: {}\t Loss: {:.6f}\t Acc: {:.6f}".format(epoch,train_loss/len(train_loader),num_correct/len(train_loader.dataset)))
  return num_correct/len(train_loader.dataset), train_loss/len(train_loader)

首先这样一次训练称为一个epoch,样本总数/batchsize是走完一个epoch所需的“步数”,相对应的,len(train_loader.dataset)也就是样本总数,len(train_loader)就是这个步数。

那么,accuracy的计算也就是在整个train_loader的for循环中(步数),把每个mini_batch中判断正确的个数累加起来,然后除以样本总数就行了;

而loss的计算有讲究了,首先在这里我们是计算交叉熵,关于交叉熵,也就是涉及到两个值,一个是模型给出的logits,也就是10个类,每个类的概率分布,另一个是样本自身的

label,在Pytorch中,只要把这两个值输进去就能计算交叉熵,用的方法是nn.CrossEntropyLoss,这个方法其实是计算了一个minibatch的均值了,因此累加以后需要除以的步数,也就是

minibatch的个数,而不是像accuracy那样是样本个数,这一点非常重要。

以上就是本次介绍的全部知识点内容,感谢大家对【听图阁-专注于Python设计】的支持。

相关文章

python正常时间和unix时间戳相互转换的方法

本文实例讲述了python正常时间和unix时间戳相互转换的方法。分享给大家供大家参考。具体分析如下: 这段代码可以用来转换常规时间格式为unix时间戳,也可以将unix时间戳转换回来,...

Python的类实例属性访问规则探讨

一般来说,在Python中,类实例属性的访问规则算是比较直观的。 但是,仍然存在一些不是很直观的地方,特别是对C++和Java程序员来说,更是如此。 在这里,我们需要明白以下几个地方:...

使用Python+wxpy 找出微信里把你删除的好友实例

使用Python+wxpy 找出微信里把你删除的好友实例

之前看到好友在发各种"群发"来检验对方是不是把自己删除了,好吧,其实那个没啥用处. 所以决定自己动手做一个 百度了一下,检测是否被删除,总结出大概网上的一些方法 第一种方法: 拉群法 就...

django中使用POST方法获取POST数据

在django中获取post数据,首先要规定post发送的数据类型是什么。 1.获取POST中表单键值数据 如果要在django的POST方法中获取表单数据,则在客户端使用JavaS...

python 写入csv乱码问题解决方法

需求背景 最近为公司开发了一套邮件日报程序,邮件一般就是表格,图片,然后就是附件。附件一般都是默认写到txt文件里,但是PM希望邮件里的附件能直接用Excel这种软件打开,最开始想保存...