Pytorch中accuracy和loss的计算知识点总结

yipeiwu_com5年前Python基础

这几天关于accuracy和loss的计算有一些疑惑,原来是自己还没有弄清楚。

给出实例

def train(train_loader, model, criteon, optimizer, epoch):
  train_loss = 0
  train_acc = 0
  num_correct= 0
  for step, (x,y) in enumerate(train_loader):

    # x: [b, 3, 224, 224], y: [b]
    x, y = x.to(device), y.to(device)

    model.train()
    logits = model(x)
    loss = criteon(logits, y)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    train_loss += float(loss.item())
    train_losses.append(train_loss)
    pred = logits.argmax(dim=1)
    num_correct += torch.eq(pred, y).sum().float().item()
  logger.info("Train Epoch: {}\t Loss: {:.6f}\t Acc: {:.6f}".format(epoch,train_loss/len(train_loader),num_correct/len(train_loader.dataset)))
  return num_correct/len(train_loader.dataset), train_loss/len(train_loader)

首先这样一次训练称为一个epoch,样本总数/batchsize是走完一个epoch所需的“步数”,相对应的,len(train_loader.dataset)也就是样本总数,len(train_loader)就是这个步数。

那么,accuracy的计算也就是在整个train_loader的for循环中(步数),把每个mini_batch中判断正确的个数累加起来,然后除以样本总数就行了;

而loss的计算有讲究了,首先在这里我们是计算交叉熵,关于交叉熵,也就是涉及到两个值,一个是模型给出的logits,也就是10个类,每个类的概率分布,另一个是样本自身的

label,在Pytorch中,只要把这两个值输进去就能计算交叉熵,用的方法是nn.CrossEntropyLoss,这个方法其实是计算了一个minibatch的均值了,因此累加以后需要除以的步数,也就是

minibatch的个数,而不是像accuracy那样是样本个数,这一点非常重要。

以上就是本次介绍的全部知识点内容,感谢大家对【听图阁-专注于Python设计】的支持。

相关文章

python模块和包的应用BASE_PATH使用解析

这篇文章主要介绍了python模块和包的应用BASE_PATH使用解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 python中的...

Python内置random模块生成随机数的方法

本文我们详细地介绍下两个模块关于生成随机序列的其他使用方法。 随机数参与的应用场景大家一定不会陌生,比如密码加盐时会在原密码上关联一串随机数,蒙特卡洛算法会通过随机数采样等等。Pytho...

python2.7实现FTP文件下载功能

本文实例为大家分享了python实现FTP文件下载功能的具体代码,供大家参考,具体内容如下 代码: #-*-coding:utf-8-*- import os impor...

python 高效去重复 支持GB级别大文件的示例代码

如下所示: #coding=utf-8 import sys, re, os def getDictList(dict): regx = '''[\w\~`\!\@\#\...

python保留小数位的三种实现方法

前言 保留小数位是我们经常会碰到的问题,尤其是刷题过程中。那么在python中保留小数位的方法也非常多,但是笔者的原则就是什么简单用什么,因此这里介绍几种比较简单实用的保留小数位的方法:...