Pytorch中accuracy和loss的计算知识点总结

yipeiwu_com6年前Python基础

这几天关于accuracy和loss的计算有一些疑惑,原来是自己还没有弄清楚。

给出实例

def train(train_loader, model, criteon, optimizer, epoch):
  train_loss = 0
  train_acc = 0
  num_correct= 0
  for step, (x,y) in enumerate(train_loader):

    # x: [b, 3, 224, 224], y: [b]
    x, y = x.to(device), y.to(device)

    model.train()
    logits = model(x)
    loss = criteon(logits, y)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    train_loss += float(loss.item())
    train_losses.append(train_loss)
    pred = logits.argmax(dim=1)
    num_correct += torch.eq(pred, y).sum().float().item()
  logger.info("Train Epoch: {}\t Loss: {:.6f}\t Acc: {:.6f}".format(epoch,train_loss/len(train_loader),num_correct/len(train_loader.dataset)))
  return num_correct/len(train_loader.dataset), train_loss/len(train_loader)

首先这样一次训练称为一个epoch,样本总数/batchsize是走完一个epoch所需的“步数”,相对应的,len(train_loader.dataset)也就是样本总数,len(train_loader)就是这个步数。

那么,accuracy的计算也就是在整个train_loader的for循环中(步数),把每个mini_batch中判断正确的个数累加起来,然后除以样本总数就行了;

而loss的计算有讲究了,首先在这里我们是计算交叉熵,关于交叉熵,也就是涉及到两个值,一个是模型给出的logits,也就是10个类,每个类的概率分布,另一个是样本自身的

label,在Pytorch中,只要把这两个值输进去就能计算交叉熵,用的方法是nn.CrossEntropyLoss,这个方法其实是计算了一个minibatch的均值了,因此累加以后需要除以的步数,也就是

minibatch的个数,而不是像accuracy那样是样本个数,这一点非常重要。

以上就是本次介绍的全部知识点内容,感谢大家对【听图阁-专注于Python设计】的支持。

相关文章

Python和php通信乱码问题解决方法

即使在urlencode之前str.decode(“cp936″).encode(“utf-8″)做了编码转换也是没用的。后来查询手册查到一个urllib.quote()函数,用此方法成...

深入探究Django中的Session与Cookie

前言 Cookie和Session相信对大家来说并不陌生,简单来说,Cookie和Session都是为了记录用户相关信息的方式,最大的区别就是Cookie在客户端记录而Session在服...

Python在图片中插入大量文字并且自动换行

Python在图片中插入大量文字并且自动换行

问题 如何在图片中插入大量文字并且自动换行 效果 原始图 效果图 注明 若需要写入中文请使用中文字体 实现方式 from PIL import Image, ImageDraw,...

Python时间和字符串转换操作实例分析

本文实例讲述了Python时间和字符串转换操作。分享给大家供大家参考,具体如下: 例子: #!/usr/bin/python # -*- coding: UTF-8 -*- impo...

理解Python中的绝对路径和相对路径

本文介绍了Python中的绝对路劲和相对路径,分享给大家,也给自己留个笔记 1、绝对路径 os.path.abspath("文件名"): 显示的是一个文件的绝对路劲 eg:...