Pytorch修改ResNet模型全连接层进行直接训练实例

yipeiwu_com6年前Python基础

之前在用预训练的ResNet的模型进行迁移训练时,是固定除最后一层的前面层权重,然后把全连接层输出改为自己需要的数目,进行最后一层的训练,那么现在假如想要只是把

最后一层的输出改一下,不需要加载前面层的权重,方法如下:

model = torchvision.models.resnet18(pretrained=False)
num_fc_ftr = model.fc.in_features
model.fc = torch.nn.Linear(num_fc_ftr, 224)
model = nn.DataParallel(model, device_ids=config.gpus).to(device)

首先模型结构是必须要传入的,然后把最后一层的输出改为自己所需的数目

以上知识点很简单,大家可以测试下,感谢大家的阅读和对【听图阁-专注于Python设计】的支持。

相关文章

Pyqt QImage 与 np array 转换方法

项目使用Pyqt作为UI框架,使用相机线程捕捉image,并在QGraphicsView中显示,遇到以下问题: 1、采集的数据为nparray数据,需转换为QImage 转换代码如下:...

python ftp 按目录结构上传下载的实现代码

具体代码如下所示: #!/usr/bin/python # coding=utf-8 from ftplib import FTP import time import os def...

Python Cookie 读取和保存方法

如下所示: #保存 cookie 到变量 import urllib.request import http.cookiejar cookie = http.cookiejar.Co...

Django中的CACHE_BACKEND参数和站点级Cache设置

CACHE_BACKEND参数 每个缓存后端都可能使用参数。 它们在CACHE_BACKEND设置中以查询字符串形式给出。 有效参数如下:     t...

pytorch中tensor张量数据类型的转化方式

1.tensor张量与numpy相互转换 tensor ----->numpy import torch a=torch.ones([2,5]) tensor([[1.,...