Pytorch修改ResNet模型全连接层进行直接训练实例

yipeiwu_com6年前Python基础

之前在用预训练的ResNet的模型进行迁移训练时,是固定除最后一层的前面层权重,然后把全连接层输出改为自己需要的数目,进行最后一层的训练,那么现在假如想要只是把

最后一层的输出改一下,不需要加载前面层的权重,方法如下:

model = torchvision.models.resnet18(pretrained=False)
num_fc_ftr = model.fc.in_features
model.fc = torch.nn.Linear(num_fc_ftr, 224)
model = nn.DataParallel(model, device_ids=config.gpus).to(device)

首先模型结构是必须要传入的,然后把最后一层的输出改为自己所需的数目

以上知识点很简单,大家可以测试下,感谢大家的阅读和对【听图阁-专注于Python设计】的支持。

相关文章

python数据封装json格式数据

最简单的使用方法是: >>> import simplejson as json >>> json.dumps(['foo', {'bar':...

tensorflow 固定部分参数训练,只训练部分参数的实例

在使用tensorflow来训练一个模型的时候,有时候需要依靠验证集来判断模型是否已经过拟合,是否需要停止训练。 1.首先想到的是用tf.placeholder()载入不同的数据来进行计...

python生成器用法实例详解

本文实例讲述了python生成器用法。分享给大家供大家参考,具体如下: 1. 生成器 利用迭代器,我们可以在每次迭代获取数据(通过next()方法)时按照特定的规律进行生成。但是我们在实...

python try except 捕获所有异常的实例

如下所示: try: a=1 except Exception as e: print (e) import traceback import sys try: a = 1...

Python中字符串的修改及传参详解

Python中字符串的修改及传参详解

发现问题 最近在面试的时候遇到一个题目,选择用JavaScript或者Python实现字符串反转,我选择了Python,然后写出了代码(错误的): #!/usr/bin/env py...