Pytorch修改ResNet模型全连接层进行直接训练实例

yipeiwu_com6年前Python基础

之前在用预训练的ResNet的模型进行迁移训练时,是固定除最后一层的前面层权重,然后把全连接层输出改为自己需要的数目,进行最后一层的训练,那么现在假如想要只是把

最后一层的输出改一下,不需要加载前面层的权重,方法如下:

model = torchvision.models.resnet18(pretrained=False)
num_fc_ftr = model.fc.in_features
model.fc = torch.nn.Linear(num_fc_ftr, 224)
model = nn.DataParallel(model, device_ids=config.gpus).to(device)

首先模型结构是必须要传入的,然后把最后一层的输出改为自己所需的数目

以上知识点很简单,大家可以测试下,感谢大家的阅读和对【听图阁-专注于Python设计】的支持。

相关文章

Python 实现简单的电话本功能

myPhoneBook2.py #!/usr/bin/python # -*- coding: utf-8 -*- import re class PhoneBook(object)...

pytorch sampler对数据进行采样的实现

PyTorch中还单独提供了一个sampler模块,用来对数据进行采样。常用的有随机采样器:RandomSampler,当dataloader的shuffle参数为True时,系统会自动...

Python命令行参数解析模块optparse使用实例

示例 复制代码 代码如下: from optparse import OptionParser [...] def main():     usage =...

对python中执行DOS命令的3种方法总结

1. 使用os.system("cmd") 特点是执行的时候程序会打出cmd在Linux上执行的信息。 import os os.system("ls") 2. 使用Popen...

pandas 使用均值填充缺失值列的小技巧分享

pd.DataFrame中通常含有许多特征,有时候需要对每个含有缺失值的列,都用均值进行填充,代码实现可以这样: for column in list(df.columns[df.i...