Pytorch修改ResNet模型全连接层进行直接训练实例

yipeiwu_com6年前Python基础

之前在用预训练的ResNet的模型进行迁移训练时,是固定除最后一层的前面层权重,然后把全连接层输出改为自己需要的数目,进行最后一层的训练,那么现在假如想要只是把

最后一层的输出改一下,不需要加载前面层的权重,方法如下:

model = torchvision.models.resnet18(pretrained=False)
num_fc_ftr = model.fc.in_features
model.fc = torch.nn.Linear(num_fc_ftr, 224)
model = nn.DataParallel(model, device_ids=config.gpus).to(device)

首先模型结构是必须要传入的,然后把最后一层的输出改为自己所需的数目

以上知识点很简单,大家可以测试下,感谢大家的阅读和对【听图阁-专注于Python设计】的支持。

相关文章

python 实现UTC时间加减的方法

如下所示: #!/usr/bin/env python # -*- coding:utf-8 -*- import datetime time_delta = datetime.t...

Django中的CACHE_BACKEND参数和站点级Cache设置

CACHE_BACKEND参数 每个缓存后端都可能使用参数。 它们在CACHE_BACKEND设置中以查询字符串形式给出。 有效参数如下:     t...

python dataframe NaN处理方式

将dataframe中的NaN替换成希望的值 import pandas as pd df1 = pd.DataFrame([{'col1':'a', 'col2':1}, {'co...

python opencv实现信用卡的数字识别

python opencv实现信用卡的数字识别

本项目利用python以及opencv实现信用卡的数字识别 前期准备 导入工具包 定义功能函数 模板图像处理 读取模板图像 cv2.imread(img) 灰度...

python 基础学习第二弹 类属性和实例属性

复制代码 代码如下: #!/usr/bin/env python class Foo(object): x=1 if __name__=='__main__': foo = Foo()...