python中如何实现将数据分成训练集与测试集的方法

yipeiwu_com6年前Python基础

接下来,直接给出大家响应的代码,并对每一行进行标注,希望能够帮到大家。

需要用到的是库是。numpy 、sklearn。

#导入相应的库(对数据库进行切分需要用到的库是sklearn.model_selection 中的 train_test_split)
import numpy as np
from sklearn.model_selection import train_test_split
 #首先,读取.CSV文件成矩阵的形式。
my_matrix = np.loadtxt(open("xxxxxx.csv"),delimiter=",",skiprows=0)
 #对于矩阵而言,将矩阵倒数第一列之前的数值给了X(输入数据),将矩阵大最后一列的数值给了y(标签)
X, y = my_matrix[:,:-1],my_matrix[:,-1]
 #利用train_test_split方法,将X,y随机划分问,训练集(X_train),训练集标签(X_test),测试卷(y_train),
 测试集标签(y_test),安训练集:测试集=7:3的
 概率划分,到此步骤,可以直接对数据进行处理
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
 #此步骤,是为了将训练集与数据集的数据分别保存为CSV文件
 #np.column_stack将两个矩阵进行组合连接
train= np.column_stack((X_train,y_train))
 #numpy.savetxt 将txt文件保存为。csv结尾的文件
numpy.savetxt('train_usual.csv',train, delimiter = ',')
test = np.column_stack((X_test, y_test))
numpy.savetxt('test_usual.csv', test, delimiter = ',')

完整没解释的代码部分为

import numpy as np
from sklearn.model_selection import train_test_split
my_matrix = np.loadtxt(open("xxxxx.csv"),delimiter=",",skiprows=0)
X, y = my_matrix[:,:-1],my_matrix[:,-1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
train= np.column_stack((X_train,y_train))
numpy.savetxt('train_usual.csv',train, delimiter = ',')
test = np.column_stack((X_test, y_test))
numpy.savetxt('test_usual.csv', test, delimiter = ',')

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Flask框架路由和视图用法实例分析

本文实例讲述了Flask框架路由和视图用法。分享给大家供大家参考,具体如下: 创建一个简单flask框架程序 #1.导入Flask类 from flask import Flask...

在Python中如何传递任意数量的实参的示例代码

1 用法 在定义函数时,加上这样一个形参 "*形参名",就可以传递任意数量的实参啦: def make_tags(* tags): '''为书本打标签''' print('标...

Python OS模块实例详解

本文实例讲述了Python OS模块。分享给大家供大家参考,具体如下: os模块 在自动化测试中,经常需要查找操作文件,比如查找配置文件(从而读取配置文件的信息),查找测试报告等等,经常...

详解python pandas 分组统计的方法

详解python pandas 分组统计的方法

首先,看看本文所面向的应用场景:我们有一个数据集df,现在想统计数据中某一列每个元素的出现次数。这个在我们前面文章《如何画直方图》中已经介绍了方法,利用value_counts()就可以...

Python实现的端口扫描功能示例

本文实例讲述了Python实现的端口扫描功能。分享给大家供大家参考,具体如下: 一 代码 import sys import socket import multiprocessin...