Python 中list ,set,dict的大规模查找效率对比详解

yipeiwu_com5年前Python基础

很多时候我们可能要频繁的进行元素的find 或in操作,本人一直天真的以为python的list做了hash,通过红黑树来高效查找···直到今天我真正来测试它和set,dict的查找效率时,才发现自已想太多了!!!!

先看代码:

__author__ = 'jmh081701'
import numpy
import time
l=[]
sl=set()
dl=dict()
r=numpy.random.randint(0,10000000,100000)
for i in range(0,100000):
  l.append(r[i])
  sl.add(r[i])
  dl.setdefault(r[i],1)
#生成3种数据结构供查找,常规的list,集合sl,字典dl.里面的元素都是随机生成的,为什么要随机生成元素?这是防止某些结构对有序数据的偏向导致测试效果不客观。

start=time.clock()
for i in range(100000):
  t=i in sl
end=time.clock()
print("set:",end-start)
#计算通过set来查找的效率
start=time.clock()
for i in range(100000):
  t=i in dl
end=time.clock()
print("dict:",end-start)
#计算通过dict的效率
start=time.clock()
for i in range(100000):
  t=i in l
end=time.clock()
print("list:",end-start)
#计算通过list的效率

结果:

set: 0.01762632617301519
dict: 0.021149536796960248
······
···
··

呵呵呵呵···list等了20分钟都没出结果。

所以···结果一览无余啊。

查找效率:set>dict>list

单次查询中:看来list 就是O(n)的;而set做了去重,本质应该一颗红黑树(猜测,STL就是红黑树),复杂度O(logn);dict类似对key进行了hash,然后再对hash生成一个红黑树进行查找,其查找复杂其实是O(logn),并不是所谓的O(1)。O(1)只是理想的实现,实际上很多hash的实现是进行了离散化的。dict比set多了一步hash的过程,so 它比set慢,不过差别不大。

so,如果是要频繁的查找,请使用set吧!

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Pytorch 数据加载与数据预处理方式

Pytorch 数据加载与数据预处理方式

数据加载分为加载torchvision.datasets中的数据集以及加载自己使用的数据集两种情况。 torchvision.datasets中的数据集 torchvision.data...

python实现证件照换底功能

本来是在找交通识别的程序,然后凑巧看见了证件照换底,于是学习了一下~一开始在网上找了一个很普遍写的程序,但是效果并不好,想要放弃了,然后看见了这个,参考:python opencv实现证...

Python语言描述KNN算法与Kd树

Python语言描述KNN算法与Kd树

最近邻法和k-近邻法 下面图片中只有三种豆,有三个豆是未知的种类,如何判定他们的种类? 提供一种思路,即:未知的豆离哪种豆最近就认为未知豆和该豆是同一种类。由此,我们引出最近邻算法的...

对tensorflow 的模型保存和调用实例讲解

我们通常采用tensorflow来训练,训练完之后应当保存模型,即保存模型的记忆(权重和偏置),这样就可以来进行人脸识别或语音识别了。 1.模型的保存 # 声明两个变量 v1 = t...

在Django中实现添加user到group并查看

一、添加user到group 第一种: user.groups.add(1) # add by id 第二种: from django.contrib.auth.models...