在pandas中遍历DataFrame行的实现方法

yipeiwu_com5年前Python基础

有如下 Pandas DataFrame:

import pandas as pd
inp = [{'c1':10, 'c2':100}, {'c1':11,'c2':110}, {'c1':12,'c2':120}]
df = pd.DataFrame(inp)
print df

上面代码输出:

   c1   c2
0  10  100
1  11  110
2  12  120

现在需要遍历上面DataFrame的行。对于每一行,都希望能够通过列名访问对应的元素(单元格中的值)。也就是说,需要类似如下的功能:

for row in df.rows:
 print row['c1'], row['c2']

Pandas 可以这样做吗?

我找到了similar question。但这并不能给我需要的答案,里面提到:

for date, row in df.T.iteritems():

要么

for row in df.iterrows():

但是我不明白row对象是什么,以及我如何使用它。

最佳解决方案

要以 Pandas 的方式迭代遍历DataFrame的行,可以使用:

DataFrame.iterrows()

for index, row in df.iterrows():
 print row["c1"], row["c2"]

DataFrame.itertuples()

for row in df.itertuples(index=True, name='Pandas'):
 print getattr(row, "c1"), getattr(row, "c2")

itertuples()应该比iterrows()快

但请注意,根据文档(目前 Pandas 0.19.1):

  • iterrows:数据的dtype可能不是按行匹配的,因为iterrows返回一个系列的每一行,它不会保留行的dtypes(dtypes跨DataFrames列保留)*
  • iterrows:不要修改行

你不应该修改你正在迭代的东西。这不能保证在所有情况下都能正常工作。根据数据类型的不同,迭代器返回一个副本而不是一个视图,写入它将不起作用。

改用DataFrame.apply():

new_df = df.apply(lambda x: x * 2)
itertuples:列名称将被重命名为位置名称,如果它们是无效的Python标识符,重复或以下划线开头。对于大量的列(> 255),返回常规元组。

第二种方案: apply

您也可以使用df.apply()遍历行并访问函数的多个列。

docs: DataFrame.apply()

def valuation_formula(x, y):
 return x * y * 0.5
 
df['price'] = df.apply(lambda row: valuation_formula(row['x'], row['y']), axis=1)

第三种方案:iloc

您可以使用df.iloc函数,如下所示:

for i in range(0, len(df)):
 print df.iloc[i]['c1'], df.iloc[i]['c2']

第四种方案:略麻烦,但是更高效,将DataFrame转为List

您可以编写自己的实现namedtuple的迭代器

from collections import namedtuple
 
def myiter(d, cols=None):
 if cols is None:
  v = d.values.tolist()
  cols = d.columns.values.tolist()
 else:
  j = [d.columns.get_loc(c) for c in cols]
  v = d.values[:, j].tolist()
 
 n = namedtuple('MyTuple', cols)
 
 for line in iter(v):
  yield n(*line)

这相当于pd.DataFrame.itertuples,但是效率更高。

将自定义函数用于给定的DataFrame:

list(myiter(df))
 
[MyTuple(c1=10, c2=100), MyTuple(c1=11, c2=110), MyTuple(c1=12, c2=120)]

或与pd.DataFrame.itertuples:

list(df.itertuples(index=False))
 
[Pandas(c1=10, c2=100), Pandas(c1=11, c2=110), Pandas(c1=12, c2=120)]

全面的测试

我们测试了所有可用列:

def iterfullA(d):
 return list(myiter(d))
 
def iterfullB(d):
 return list(d.itertuples(index=False))
 
def itersubA(d):
 return list(myiter(d, ['col3', 'col4', 'col5', 'col6', 'col7']))
 
def itersubB(d):
 return list(d[['col3', 'col4', 'col5', 'col6', 'col7']].itertuples(index=False))
 
res = pd.DataFrame(
 index=[10, 30, 100, 300, 1000, 3000, 10000, 30000],
 columns='iterfullA iterfullB itersubA itersubB'.split(),
 dtype=float
)
 
for i in res.index:
 d = pd.DataFrame(np.random.randint(10, size=(i, 10))).add_prefix('col')
 for j in res.columns:
  stmt = '{}(d)'.format(j)
  setp = 'from __main__ import d, {}'.format(j)
  res.at[i, j] = timeit(stmt, setp, number=100)
 
res.groupby(res.columns.str[4:-1], axis=1).plot(loglog=True);

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python利用WMI实现ping命令的例子

WMI是Windows系统的一大利器,Python的win32api库提供了对WMI的支持,安装win32api即可使用 WMI。 本例通过WMI的WQL实现ping命令。 impo...

特征脸(Eigenface)理论基础之PCA主成分分析法

特征脸(Eigenface)理论基础之PCA主成分分析法

在之前的博客 人脸识别经典算法一:特征脸方法(Eigenface)里面介绍了特征脸方法的原理,但是并没有对它用到的理论基础PCA做介绍,现在做补充。请将这两篇博文结合起来阅读。以下内容大...

Python开发之基于模板匹配的信用卡数字识别功能

Python开发之基于模板匹配的信用卡数字识别功能

环境介绍 Python 3.6 + OpenCV 3.4.1.15 原理介绍 首先,提取出模板中每一个数字的轮廓,再对信用卡图像进行处理,提取其中的数字部分,将该部分数字与模板进行匹...

Python MySQL数据库连接池组件pymysqlpool详解

Python MySQL数据库连接池组件pymysqlpool详解

引言 pymysqlpool (本地下载)是数据库工具包中新成员,目的是能提供一个实用的数据库连接池中间件,从而避免在应用中频繁地创建和释放数据库连接资源。 功能 连接池本...

使用python进行广告点击率的预测的实现

使用python进行广告点击率的预测的实现

当前在线广告服务中,广告的点击率(CTR)是评估广告效果的一个非常重要的指标。 因此,点击率预测系统是必不可少的,并广泛用于赞助搜索和实时出价。那么如何计算广告的点击率呢? 广告的点击率...