python 计算积分图和haar特征的实例代码

yipeiwu_com5年前Python基础

下面的代码通过积分图计算一张图片的一种haar特征的所有可能的值。初步学习图像处理并尝试写代码,如有错误,欢迎指出。

import cv2
import numpy as np
import matplotlib.pyplot as plt
#
#计算积分图
#
def integral(img):
  integ_graph = np.zeros((img.shape[0],img.shape[1]),dtype = np.int32)
  for x in range(img.shape[0]):
    sum_clo = 0
    for y in range(img.shape[1]):
      sum_clo = sum_clo + img[x][y]
      integ_graph[x][y] = integ_graph[x-1][y] + sum_clo;
  return integ_graph

# Types of Haar-like rectangle features
#  --- ---
# |  |  |
# | - | + |
# |  |  |
# --- ---
#
#就算所有需要计算haar特征的区域
#
def getHaarFeaturesArea(width,height):
  widthLimit = width-1
  heightLimit = height/2-1
  features = []
  for w in range(1,int(widthLimit)):
    for h in range(1,int(heightLimit)):
      wMoveLimit = width - w
      hMoveLimit = height - 2*h
      for x in range(0, wMoveLimit):
        for y in range(0, hMoveLimit):
          features.append([x, y, w, h])
  return features
#
#通过积分图特征区域计算haar特征
#
def calHaarFeatures(integral_graph,features_graph):
  haarFeatures = []
  for num in range(len(features_graph)):
    #计算左面的矩形区局的像素和
    haar1 = integral_graph[features_graph[num][0]][features_graph[num][1]]-\
    integral_graph[features_graph[num][0]+features_graph[num][2]][features_graph[num][1]] -\
    integral_graph[features_graph[num][0]][features_graph[num][1]+features_graph[num][3]] +\
    integral_graph[features_graph[num][0]+features_graph[num][2]][features_graph[num][1]+features_graph[num][3]]
    #计算右面的矩形区域的像素和
    haar2 = integral_graph[features_graph[num][0]][features_graph[num][1]+features_graph[num][3]]-\
    integral_graph[features_graph[num][0]+features_graph[num][2]][features_graph[num][1]+features_graph[num][3]] -\
    integral_graph[features_graph[num][0]][features_graph[num][1]+2*features_graph[num][3]] +\
    integral_graph[features_graph[num][0]+features_graph[num][2]][features_graph[num][1]+2*features_graph[num][3]]
    #右面的像素和减去左面的像素和
    haarFeatures.append(haar2-haar1)
  return haarFeatures


img = cv2.imread("faces/face00001.bmp",0)
integeralGraph = integral(img)
featureAreas = getHaarFeaturesArea(img.shape[0],img.shape[1])
haarFeatures = calHaarFeatures(integeralGraph,featureAreas)
print(haarFeatures)

以上这篇python 计算积分图和haar特征的实例代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python 实现Flask中返回图片流给前端展示

场景需求:需要在Flask服务器的本地找一张图片返回给前端展示出来。 问题疑点:通常前端的<img>标签只会接受url的形式来展示图片,没试过在返回服务器本地的一张图片给前端...

Python的函数的一些高阶特性

高阶函数英文叫Higher-order function。什么是高阶函数?我们以实际代码为例子,一步一步深入概念。 变量可以指向函数 以Python内置的求绝对值的函数abs()为例,调...

Python方法的延迟加载的示例代码

数据挖掘的过程中,数据进行处理是一重要的环节,我们往往会将其封装成一个方法,而有的时候这一个方法可能会被反复调用,每一次都对数据进行处理这将是一个很耗时耗资源的操纵,那么有没有办法将计算...

基于python实现简单日历

本文实例为大家分享了python实现简单日历的具体代码,供大家参考,具体内容如下 首先要理清楚逻辑,日历的难点在于如何使用基础知识将周几与对应的日期进行对应,我这里利用了1917年1月...

利用Python破解斗地主残局详解

利用Python破解斗地主残局详解

前言 相信大家都玩过斗地主,规则就不再介绍了。 直接上一张朋友圈看到的残局图: 这道题我刚看到时,曾尝试用手工来破解,每次都以为找到了农民的必胜策略时,最后都发现其实农民跑不掉。由于手...