python 计算积分图和haar特征的实例代码

yipeiwu_com6年前Python基础

下面的代码通过积分图计算一张图片的一种haar特征的所有可能的值。初步学习图像处理并尝试写代码,如有错误,欢迎指出。

import cv2
import numpy as np
import matplotlib.pyplot as plt
#
#计算积分图
#
def integral(img):
  integ_graph = np.zeros((img.shape[0],img.shape[1]),dtype = np.int32)
  for x in range(img.shape[0]):
    sum_clo = 0
    for y in range(img.shape[1]):
      sum_clo = sum_clo + img[x][y]
      integ_graph[x][y] = integ_graph[x-1][y] + sum_clo;
  return integ_graph

# Types of Haar-like rectangle features
#  --- ---
# |  |  |
# | - | + |
# |  |  |
# --- ---
#
#就算所有需要计算haar特征的区域
#
def getHaarFeaturesArea(width,height):
  widthLimit = width-1
  heightLimit = height/2-1
  features = []
  for w in range(1,int(widthLimit)):
    for h in range(1,int(heightLimit)):
      wMoveLimit = width - w
      hMoveLimit = height - 2*h
      for x in range(0, wMoveLimit):
        for y in range(0, hMoveLimit):
          features.append([x, y, w, h])
  return features
#
#通过积分图特征区域计算haar特征
#
def calHaarFeatures(integral_graph,features_graph):
  haarFeatures = []
  for num in range(len(features_graph)):
    #计算左面的矩形区局的像素和
    haar1 = integral_graph[features_graph[num][0]][features_graph[num][1]]-\
    integral_graph[features_graph[num][0]+features_graph[num][2]][features_graph[num][1]] -\
    integral_graph[features_graph[num][0]][features_graph[num][1]+features_graph[num][3]] +\
    integral_graph[features_graph[num][0]+features_graph[num][2]][features_graph[num][1]+features_graph[num][3]]
    #计算右面的矩形区域的像素和
    haar2 = integral_graph[features_graph[num][0]][features_graph[num][1]+features_graph[num][3]]-\
    integral_graph[features_graph[num][0]+features_graph[num][2]][features_graph[num][1]+features_graph[num][3]] -\
    integral_graph[features_graph[num][0]][features_graph[num][1]+2*features_graph[num][3]] +\
    integral_graph[features_graph[num][0]+features_graph[num][2]][features_graph[num][1]+2*features_graph[num][3]]
    #右面的像素和减去左面的像素和
    haarFeatures.append(haar2-haar1)
  return haarFeatures


img = cv2.imread("faces/face00001.bmp",0)
integeralGraph = integral(img)
featureAreas = getHaarFeaturesArea(img.shape[0],img.shape[1])
haarFeatures = calHaarFeatures(integeralGraph,featureAreas)
print(haarFeatures)

以上这篇python 计算积分图和haar特征的实例代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

编写同时兼容Python2.x与Python3.x版本的代码的几个示例

编写兼容Python2.x与3.x代码 当我们正处于Python 2.x到Python 3.x的过渡期时,你可能想过是否可以在不修改任何代码的前提下能同时运行在Python 2和3中。这...

使用python实现mqtt的发布和订阅

需要安装的python库 使用python编写程序进行测试MQTT的发布和订阅功能。首先要安装:pip install paho-mqtt 测试发布(pub) 我的MQTT部署在阿里云的...

python判断端口是否打开的实现代码

复制代码 代码如下:#!/usr/bin/env python# name IsOpen.pyimport osimport socketdef IsOpen(ip,port):&nbs...

Python 实现顺序高斯消元法示例

Python 实现顺序高斯消元法示例

我就废话不多说,直接上代码吧! # coding: utf8 import numpy as np # 设置矩阵 def getInput(): matrix_a = np.m...

python selenium登录豆瓣网过程解析

登录流程: 实例化一个driver,然后driver.get()发送请求 最重要的:切换iframe子框架,因为豆瓣的网页中的登录那部分是一个ifrme,必须切换才能寻找到对...