Python实现平行坐标图的绘制(plotly)方式

yipeiwu_com5年前Python基础

平行坐标图简介

当数据的维度超过三维时,此时数据的可视化就变得不再那么简单。为解决高维数据的可视化问题,我们可以使用平行坐标图。以下关于平行坐标图的解释引自百度百科:为了克服传统的笛卡尔直角坐标系容易耗尽空间、 难以表达三维以上数据的问题, 平行坐标图将高维数据的各个变量用一系列相互平行的坐标轴表示, 变量值对应轴上位置。为了反映变化趋势和各个变量间相互关系,往往将描述不同变量的各点连接成折线。所以平行坐标图的实质是将m维欧式空间的一个点Xi(xi1,xi2,...,xim) 映射到二维平面上的一条曲线。在N条平行的线的背景下,(一般这N条线都竖直且等距),一个在高维空间的点可以被表示为一条拐点在N条平行坐标轴的折线,在第K个坐标轴上的位置就表示这个点在第K个维的值。

绘制平行坐标图

本文主要介绍两种利用Python绘制平行坐标图的方法,分别是利用pandas包绘制和利用plotly包绘制(默认已安装pandas包和plotly包)。

利用pandas实现平行坐标图的绘制

import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from pandas.plotting import parallel_coordinates
 
data = sns.load_dataset('iris')
 
fig,axes = plt.subplots()
parallel_coordinates(data,'species',ax=axes)
fig.savefig('parallel.png')

绘制的平行坐标图如下所示:

从上图可以看到x轴上变量共用一个y坐标轴,此时因sepal_length、sepal_width、petal_length以及petal_width这四个变量的值得范围相近,利用这种方式作出的共用y轴的平行坐标图有着很好的可视化效果;但假如sepal_length、sepal_width、petal_length以及petal_width这些变量的值的范围相差较大时,这种共用y轴的平行坐标图就不再适用,此时我们需要的是y轴独立的平行坐标图。下面介绍的另一种方法实现的就是y轴独立的平行坐标图。

利用plotly实现平行坐标图的绘制

plotly绘图有两种模式,一种是online模式,另一种是offline模式。本文使用的是offline模式,且是在jupyter notebook中进行绘图。

首先熟悉一下plotly的绘图方式:

import plotly as py
import plotly.graph_objs as go
py.offline.init_notebook_mode(connected=True) # 初始化设置
 
py.offline.iplot({
 "data": [go.Parcoords(
  line = dict(color = 'blue'),
  dimensions = list([
   dict(range = [1,5],
     constraintrange = [1,2],
     label = 'A', values = [1,4]),
   dict(range = [1.5,5],
     tickvals = [1.5,3,4.5],
     label = 'B', values = [3,1.5]),
   dict(range = [1,5],
     tickvals = [1,2,4,5],
     label = 'C', values = [2,4],
     ticktext = ['text 1', 'text 2', 'text 3', 'text 4']),
   dict(range = [1,5],
     label = 'D', values = [4,2])
  ])
 )],
 "layout": go.Layout(title="My first parallel coordinates")
})

绘制图形如下所示:

绘制鸢尾花数据的平行坐标图:

df = sns.load_dataset('iris')
df['species_id'] = df['species'].map({'setosa':1,'versicolor':2,'virginica':3}) #用于颜色映射
 
py.offline.iplot({
 "data": [go.Parcoords(
  line = dict(color = df['species_id'],
     colorscale = [[0,'#D7C16B'],[0.5,'#23D8C3'],[1,'#F3F10F']]),
  dimensions = list([
   dict(range = [2,8],
    constraintrange = [4,8],
    label = 'Sepal Length', values = df['sepal_length']),
   dict(range = [1,6],
    label = 'Sepal Width', values = df['sepal_width']),
   dict(range = [0,8],
    label = 'Petal Length', values = df['petal_length']),
   dict(range = [0,4],
    label = 'Petal Width', values = df['petal_width'])
  ])
 )],
 "layout": go.Layout(title='Iris parallel coordinates plot')
})

绘制的图形如下所示:

注:关于plotly.offline.iplot、go.Parcoords以及go.Layout的用法可以利用help关键字查看相关帮助文档,与pyecharts不同,plotly提供的帮助文档非常详细。

以上这篇Python实现平行坐标图的绘制(plotly)方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python变量的存储原理详解

python变量的存储原理详解

变量的存储 在高级语言中,变量是对内存及其地址的抽象。 对于python而言,python的一切变量都是对象,变量的存储,采用了引用语义的方式,存储的只是一个变量的值所在的内存地址,而...

Python网络编程之TCP与UDP协议套接字用法示例

本文实例讲述了Python网络编程之TCP与UDP协议套接字用法。分享给大家供大家参考,具体如下: TCP协议 服务器端: #!/usr/bin/env python from so...

python实现读取excel写入mysql的小工具详解

Python是数据分析的强大利器 利用Python做数据分析,第一步就是学习如何读取日常工作中产生各种excel报表并存入数据中,方便后续数据处理。 这里向大家分享python如何读取...

pandas.dataframe按行索引表达式选取方法

需要把一个从csv文件里读取来的数据集等距抽样分割,这里用到了列表表达式和dataframe.iloc 先生成索引列表: index_list = ['%d' %i for i in...

python 判断三个数字中的最大值实例代码

python 判断三个数字中的最大值,具体代码如下所示: #判断三个数中最大值 n1= int(input('please enter the firest number:')) n...