关于pandas的离散化,面元划分详解

yipeiwu_com5年前Python基础

pd.cut

pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False)

x:要分箱的输入数组,必须是一维的

bins:int或标量序列

若bins是一个int,它定义在x范围内的等宽单元的数量。然而,在这种情况下,x的范围在每一侧延伸0.1%以包括x的最小值或最大值

若bins是一个序列,它定义了允许非均匀bin宽度的bin边缘。在这种情况下不进行x的范围的扩展

right:bool,可选:决定区间的开闭,如果right == True(默认),则区间[1,2,3,4]指示(1,2],(2,3],(3,4]

labels:array或boolean,默认值为无:用作生成的区间的标签。必须与生成的区间的长度相同。如果为False,则只返回bin的整数指示符

retbins:bool,可选:是否返回bin。如果bin作为标量给出,则可能有用

precision:int:存储和显示容器标签的精度,默认保留三位小数

include_lowest:bool:第一个间隔是否应该包含左边

import numpy as np
import pandas as pd
# 使用pandas的cut函数划分年龄组
ages = [20,22,25,27,21,23,37,31,61,45,32]
bins = [18,25,35,60,100]
cats = pd.cut(ages,bins)
print(cats) # 分类时,当数据不在区间中将变为nan
# 统计落在各个区间的值数量
print(pd.value_counts(cats))
# 使用codes为年龄数据进行标号
print(cats.codes)
# 设置自己想要的面元名称
group_names = ['Youth','YoungAdult','MiddleAged','Senior']
print(pd.cut(ages, bins, labels=group_names))
# 设置区间数学符号为左闭右开
print(pd.cut(ages, bins, right=False))
# 向cut传入面元的数量,则会根据数据的最小值和最大值计算等长面元
print(pd.cut(ages, 4, precision=2)) # precision=2表示设置的精度

pd.qcut

与cut类似,它可以根据样本分位数对数据进行面元划分

pandas.qcut(x, q, labels=None, retbins=False, precision=3) 

x:ndarray或Series

q:整数或分位数阵列分位数。十分位数为10,四分位数为4或者,分位数阵列,例如[0,.25,.5,.75,1.]四分位数

labels:array或boolean,默认值为无:用作生成的区间的标签。必须与生成的区间的长度相同。如果为False,则只返回bin的整数指示符。

retbins:bool,可选:是否返回bin。如果bin作为标量给出,则可能有用。

precision:int:存储和显示容器标签的精度

import numpy as np
import pandas as pd

# qcut可以根据样本分位数对数据进行面元划分
# data = np.random.randn(20) # 正态分布
data = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
cats = pd.qcut(data, 4) # 按四分位数进行切割
print(cats)
print(pd.value_counts(cats))
print("-------------------------------------------------")
# 通过指定分位数(0到1之间的数值,包含端点)进行面元划分
cats_2 = pd.qcut(data, [0, 0.5, 0.8, 0.9, 1])
print(cats_2)
print(pd.value_counts(cats_2))

以上这篇关于pandas的离散化,面元划分详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python批量修改文件夹及其子文件夹下的文件内容

python批量修改文件夹及其子文件夹下的文件内容

前言:前几天我看一位同学要修改很多文件中的数据,该文件数据很规律,一行只有三个数,需要将每行最后一个数字改为负数,但文件有上千个,分布在每个文件夹下面以及它的多级子文件夹下,看他用exc...

Django静态资源URL STATIC_ROOT的配置方法

缘由   新手学习 Django 当配置好 HTML 页面后,就需要使用一些静态资源,如图片,JS 文件,CSS 样式等,但是 Django 里面使用这些资源并不是直接引用一下就好,还要...

Python中常见的数据类型小结

Python提供多种数据类型来存放数据项集合,主要包括序列(列表list和元组tuple),映射(如字典dict),集合(set),下面对这几种一一介绍: 一 序列 1.列表list 列...

Ubuntu下创建虚拟独立的Python环境全过程

前言 虚拟环境是程序执行时的独立执行环境,在同一台服务器中可以创建不同的虚拟环境供不同的系统使用,项目之间的运行环境保持独立性而相互不受影响。例如项目可以在基于 Python2.7 的环...

numpy 对矩阵中Nan的处理:采用平均值的方法

尽管我们可以将所有的NaN替换成0,但是由于并不知道这些值的意义,所以这样做是个下策。如果它们是开氏温度,那么将它们置成0这种处理策略就太差劲了。 下面我们用平均值来代替缺失值,平均值根...