基于python cut和qcut的用法及区别详解

yipeiwu_com6年前Python基础

我就废话不多说了,直接上代码吧:

from pandas import Series,DataFrame
import pandas as pd
import numpy as np
from numpy import nan as NA
from matplotlib import pyplot as plt
ages = [20,22,25,27,21,23,37,31,61,45,41,32]
#将所有的ages进行分组
bins = [18,25,35,60,100]
#使用pandas中的cut对年龄数据进行分组
cats = pd.cut(ages,bins)
#print(cats)
#调用pd.value_counts方法统计每个区间的个数
number=pd.value_counts(cats)
#print(pd.value_counts(cats))
#显示第几个区间index值
index=pd.cut(ages,bins).codes
#print(index)
#为分类出来的每一组年龄加上标签
group_names = ["Youth","YouthAdult","MiddleAged","Senior"]
personType=pd.cut(ages,bins,labels=group_names)
#print(personType)
plt.hist(personType)
#plt.show()
#cut和qcut的用法
data=[1,2,3,4,5,6,7,8,9,10]
result=pd.qcut(data,4)
print(' ',result)##qcut会将10个数据进行排序,然后再将data数据均分成四组
#统计落在每个区间的元素个数
print('dasdasdasdasdas:  ',pd.value_counts(result))
#qcut : 跟cut一样也可以自定义分位数(0到1之间的数值,包括端点)
results=pd.qcut(data,[0,0.1,0.5,0.9,1])
print('results:  ',results)
import numpy as np
import pandas as pd
data = np.random.rand(20)
print(data)
#用cut函数将一组数据分割成n份
#cut函数分割的方式:数据里的(最大值-最小值)/n=每个区间的间距
#利用数据中最大值和最小值的差除以分组数作为每一组数据的区间范围的差值
result = pd.cut(data,4,precision=2) #precision保留小数点的有效位数
print(result)
res_data=pd.value_counts(result)
print(res_data)

以上这篇基于python cut和qcut的用法及区别详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python程序控制语句用法实例分析

Python程序控制语句用法实例分析

本文实例讲述了Python程序控制语句用法。分享给大家供大家参考,具体如下: 1、换行 在Python中默认换行结束一个语句而不是使用分号,而如果我们的语句无法在一行放下需要换行时,就需...

Python3 replace()函数使用方法

描述 replace() 方法把字符串中的 old(旧字符串) 替换成 new(新字符串),如果指定第三个参数max,则替换不超过 max 次。 语法 replace()方法语法: st...

python八大排序算法速度实例对比

python八大排序算法速度实例对比

这篇文章并不是介绍排序算法原理的,纯粹是想比较一下各种排序算法在真实场景下的运行速度。 算法由 Python 实现,可能会和其他语言有些区别,仅当参考就好。 测试的数据是自动生成的,以数...

python+Splinter实现12306抢票功能

本文实例为大家分享了python实现12306抢票功能的具体代码,供大家参考,具体内容如下 源码记录如下: #!/usr/bin/env python # _*_ coding:ut...

Python中six模块基础用法

背景 大家知道现在python主要有两个大的版本,一个是python2另一个是python3,那么不同的人可能会习惯不同的版本,而python2和python3又有一些区别和不兼容的地...