python实现差分隐私Laplace机制详解

yipeiwu_com6年前Python基础

Laplace分布定义:

下面先给出Laplace分布实现代码:

import matplotlib.pyplot as plt
import numpy as np
 
def laplace_function(x,beta):
 result = (1/(2*beta)) * np.e**(-1*(np.abs(x)/beta))
 return result
#在-5到5之间等间隔的取10000个数
x = np.linspace(-5,5,10000)
y1 = [laplace_function(x_,0.5) for x_ in x]
y2 = [laplace_function(x_,1) for x_ in x]
y3 = [laplace_function(x_,2) for x_ in x]
 
 
plt.plot(x,y1,color='r',label='beta:0.5')
plt.plot(x,y2,color='g',label='beta:1')
plt.plot(x,y3,color='b',label='beta:2')
plt.title("Laplace distribution")
plt.legend()
plt.show()

效果图如下:

接下来给出Laplace机制实现:

Laplace机制,即在操作函数结果中加入服从Laplace分布的噪声。

Laplace概率密度函数Lap(x|b)=1/2b exp(-|x|/b)正比于exp(-|x|/b)。

import numpy as np
 
def noisyCount(sensitivety,epsilon):
 beta = sensitivety/epsilon
 u1 = np.random.random()
 u2 = np.random.random()
 if u1 <= 0.5:
  n_value = -beta*np.log(1.-u2)
 else:
  n_value = beta*np.log(u2)
 print(n_value)
 return n_value
 
def laplace_mech(data,sensitivety,epsilon):
 for i in range(len(data)):
  data[i] += noisyCount(sensitivety,epsilon)
 return data
 
if __name__ =='__main__':
 x = [1.,1.,0.]
 sensitivety = 1
 epsilon = 1
 data = laplace_mech(x,sensitivety,epsilon)
 for j in data:
  print(j)

以上这篇python实现差分隐私Laplace机制详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

利用python实现短信和电话提醒功能的例子

有时候,我们需要程序帮我们自动检测某些事件的发生 这个需求是广泛存在的 因此,这里整理了利用python实现短信和电话提醒功能的方法 主要需要完成以下4个步骤: - 安装核心库:twi...

Python 删除整个文本中的空格,并实现按行显示

希望以后每天写一篇博客,总结一下每天用到的基本功能,不然项目做完也就做完了,给自己留下的资料太少了。 今天需要造大量的姓名和家庭住址的数据,因此根据读取文件中现有的lastname、fi...

wxPython之解决闪烁的问题

wxPython之解决闪烁的问题

利用Python生成PDF文件时,对比了fpdf和reportlab两个库。fpdf最新更新还是2015年, 另外reportlab的资料网上更多一些。所以选择使用reportlab。...

Python实例分享:快速查找出被挂马的文件

Python实例分享:快速查找出被挂马的文件

思路 需要实现准备一份未受感染的源代码和一份可能受感染的源代码,然后运行以下脚本,就能找出到底哪些文件被挂马了。 其中,主要是根据比对2份文件的md5值来过滤可能被挂马的文件(确切的说应...

Python中最常用的操作列表的几种方法归纳

这里介绍几个常用的列表操作 添加元素 添加元素使用列表的内置方法append number = [1, 2, 3, 4] number.append(5) # number = [1...