python实现差分隐私Laplace机制详解

yipeiwu_com5年前Python基础

Laplace分布定义:

下面先给出Laplace分布实现代码:

import matplotlib.pyplot as plt
import numpy as np
 
def laplace_function(x,beta):
 result = (1/(2*beta)) * np.e**(-1*(np.abs(x)/beta))
 return result
#在-5到5之间等间隔的取10000个数
x = np.linspace(-5,5,10000)
y1 = [laplace_function(x_,0.5) for x_ in x]
y2 = [laplace_function(x_,1) for x_ in x]
y3 = [laplace_function(x_,2) for x_ in x]
 
 
plt.plot(x,y1,color='r',label='beta:0.5')
plt.plot(x,y2,color='g',label='beta:1')
plt.plot(x,y3,color='b',label='beta:2')
plt.title("Laplace distribution")
plt.legend()
plt.show()

效果图如下:

接下来给出Laplace机制实现:

Laplace机制,即在操作函数结果中加入服从Laplace分布的噪声。

Laplace概率密度函数Lap(x|b)=1/2b exp(-|x|/b)正比于exp(-|x|/b)。

import numpy as np
 
def noisyCount(sensitivety,epsilon):
 beta = sensitivety/epsilon
 u1 = np.random.random()
 u2 = np.random.random()
 if u1 <= 0.5:
  n_value = -beta*np.log(1.-u2)
 else:
  n_value = beta*np.log(u2)
 print(n_value)
 return n_value
 
def laplace_mech(data,sensitivety,epsilon):
 for i in range(len(data)):
  data[i] += noisyCount(sensitivety,epsilon)
 return data
 
if __name__ =='__main__':
 x = [1.,1.,0.]
 sensitivety = 1
 epsilon = 1
 data = laplace_mech(x,sensitivety,epsilon)
 for j in data:
  print(j)

以上这篇python实现差分隐私Laplace机制详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python中报错"json.decoder.JSONDecodeError: Expecting value:"的解决

在学习python语言中用json库解析网络数据时,我遇到了两个编译错误:json.decoder.JSONDecodeError: Expecting property name en...

python ddt实现数据驱动

ddt 是第三方模块,需安装, pip install ddt DDT包含类的装饰器ddt和两个方法装饰器data(直接输入测试数据) 通常情况下,data中的数据按照一个参数传递给测试...

python实时监控cpu小工具

python实时监控cpu小工具

本文实例为大家分享了python实时监控cpu的工具,供大家参考,具体内容如下 虽然写的很不完善,但是当练手吧,对于实时监控cpu还是有点用处的,虽然android studio已经提供...

Python Sql数据库增删改查操作简单封装

本文实例为大家分享了如何利用Python对数据库的增删改查进行简单的封装,供大家参考,具体内容如下 1.insert     import...

Python绘图实现显示中文

Python绘图实现显示中文

我们用Python进行数据可视化,绘制各种图形时,往往会遇到明明数据都设置对了,但是在图形上显示不出来。例如绘制直方图,程序如下: plt.hist(roll_list, bins=...