关于Numpy数据类型对象(dtype)使用详解

yipeiwu_com5年前Python基础

常用方法

#记住引入numpy时要是用别名np,则所有的numpy字样都要替换
 #查询数值类型
>>>type(float)
dtype('float64')
# 查询字符代码
>>> dtype('f')
dtype('float32')
>>> dtype('d')
dtype('float64')
# 查询双字符代码
>>> dtype('f8')
dtype('float64')
# 获取所有字符代码
>>> sctypeDict.keys()
[0, … 'i2', 'int0']
 
# char 属性用来获取字符代码
>>> t = dtype('Float64')
>>> t.char
'd'
# type 属性用来获取类型
>>> t.type
<type 'numpy.float64'>
 
# str 属性获取完整字符串表示
# 第一个字符是字节序,< 表示小端,> 表示大端,| 表示平台的字节序
>>> t.str
'<f8'
 
# 获取大小
>>> t.itemsize
8
 
# 许多函数拥有 dtype 参数
# 传入数值类型、字符代码和 dtype 都可以
>>> arange(7, dtype=uint16)
array([0, 1, 2, 3, 4, 5, 6], dtype=uint16)

类型参数及缩写

类型 字符代码
bool ?, b1
int8 b, i1
uint8 B, u1
int16 h, i2
uint16 H, u2
int32 i, i4
uint32 I, u4
int64 q, i8
uint64 Q, u8
float16 f2, e
float32 f4, f
float64 f8, d
complex64 F4, F
complex128 F8, D
str a, S(可以在S后面添加数字,表示字符串长度,比如S3表示长度为三的字符串,不写则为最大长度)
unicode U
object O
void V

自定义异构数据类型

基本书写格式

import numpy
#定义t的各个字段类型
>>> t = dtype([('name', str, 40), ('numitems', numpy.int32), ('price',numpy.float32)])
>>> t
dtype([('name', '|S40'), ('numitems', '<i4'), ('price','<f4')])
 
# 获取字段类型
>>> t['name']
dtype('|S40')
 
# 使用记录类型创建数组
# 否则它会把记录拆开
>>> itemz = array([('Meaning of life DVD', 42, 3.14), ('Butter', 13,2.72)], dtype=t)
>>> itemz[1]
('Butter', 13, 2.7200000286102295)
#再举个例*
>>>adt = np.dtype("a3, 3u8, (3,4)a10") #3字节字符串、3个64位整型子数组、3*4的10字节字符串数组,注意8为字节
>>>itemz = np.array([('Butter',[13,2,3],[['d','o','g','s'],['c','a','t','s'],['c','o','w','s']])],dtype=adt)
>>>itemz
(b'But', [13, 2, 3], [[b'd', b'o', b'g', b's'], [b'c', b'a', b't', b's'], [b'c', b'o', b'w', b's']])

其他书写格式

#(flexible_dtype, itemsize)第一个大小不固定的参数类型,第二传入大小:
>>> dt = np.dtype((void, 10)) #10位
>>> dt = np.dtype((str, 35))  # 35字符字符串
>>> dt = np.dtype(('U', 10))  # 10字符unicode string
 
#(fixed_dtype, shape)第一个传入固定大小的类型参数,第二参数传入个数
>>> dt = np.dtype((np.int32, (2,2)))     # 2*2int子数组
举例: >>>item = np.array([([12,12],[55,56])], dtype=dt)
array([[12, 12], [55, 56]])
>>> dt = np.dtype(('S10', 1))         # 10字符字符串
>>> dt = np.dtype(('i4, (2,3)f8, f4', (2,3))) # 2*3结构子数组
 
#[(field_name, field_dtype, field_shape), …]
>>> dt = np.dtype([('big', '>i4'), ('little', '<i4')])
>>> dt = np.dtype([('R','u1'), ('G','u1'), ('B','u1'), ('A','u1')])
 
#{‘names': …, ‘formats': …, ‘offsets': …, ‘titles': …, ‘itemsize': …}:
>>> dt= np.dtype({'names':('Date','Close'),'formats':('S10','f8')})
>>> dt = np.dtype({'names': ['r','b'], 'formats': ['u1', 'u1'], 'offsets': [0, 2],'titles': ['Red pixel', 'Blue pixel']})
 
#(base_dtype, new_dtype):
>>>dt = np.dtype((np.int32, (np.int8, 4))) //base_dtype被分成4个int8的子数组

以上这篇关于Numpy数据类型对象(dtype)使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

用Python进行行为驱动开发的入门教程

用Python进行行为驱动开发的入门教程

为驱动开发(Behavior-Driven Development,BDD)是一种卓越的开发模式。能帮助开发者养成日清日结的好习惯,从而避免甚至杜绝“最后一分钟”的情况出现,因此对提高代...

Python中__call__用法实例

本文实例讲述了Python中__call__的用法,分享给大家供大家参考之用。具体方法如下: 先来看看如下示例代码: #call.py 一个class被载入的情况下。 class N...

windows下python和pip安装教程

windows下python和pip安装教程

本文实例为大家分享了python和pip安装教程,供大家参考,具体内容如下 1.安装python 第一步,windows下面的Python安装一般是通过软件安装包安装而不是命令行,所以我...

python实现自主查询实时天气

python实现自主查询实时天气

本文实例为大家分享了python实现自主查询实时天气的具体代码,供大家参考,具体内容如下 用到了urllib2 json  很简单的一个应用 如下 获取城市编号 #cod...

用python + openpyxl处理excel2007文档思路以及心得

寻觅工具 确定任务之后第一步就是找个趁手的库来干活。 Python Excel上列出了xlrd、xlwt、xlutils这几个包,但是 它们都比较老,xlwt甚至不支持07版以后的exc...