numpy.linalg.eig() 计算矩阵特征向量方式

yipeiwu_com5年前Python基础

在PCA中有遇到,在这里记录一下

计算矩阵的特征值个特征向量,下面给出几个示例代码:

在使用前需要单独import一下

>>> from numpy import linalg as LA
>>> w, v = LA.eig(np.diag((1, 2, 3)))
>>> w; v
array([ 1., 2., 3.])
array([[ 1., 0., 0.],
    [ 0., 1., 0.],
    [ 0., 0., 1.]])
>>> w, v = LA.eig(np.array([[1, -1], [1, 1]]))
>>> w; v
array([ 1. + 1.j, 1. - 1.j])
array([[ 0.70710678+0.j    , 0.70710678+0.j    ],
    [ 0.00000000-0.70710678j, 0.00000000+0.70710678j]])
>>> a = np.array([[1, 1j], [-1j, 1]])
>>> w, v = LA.eig(a)
>>> w; v
array([ 2.00000000e+00+0.j,  5.98651912e-36+0.j]) # i.e., {2, 0}
array([[ 0.00000000+0.70710678j, 0.70710678+0.j    ],
    [ 0.70710678+0.j    , 0.00000000+0.70710678j]])
>>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]])
>>> # Theor. e-values are 1 +/- 1e-9
>>> w, v = LA.eig(a)
>>> w; v
array([ 1., 1.])
array([[ 1., 0.],
    [ 0., 1.]])

官方文档链接:http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.eig.html

以上这篇numpy.linalg.eig() 计算矩阵特征向量方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python求解数组中两个字符串的最小距离

题目: 给定一个数组 strs,其中的数据都是字符串,给定两个字符串 str1,str2。如果这两个字符串都在 strs数组中,就返回它们之间的最小距离;如果其中任何一个不在里面,则返...

Python从零开始创建区块链

Python从零开始创建区块链

作者认为最快的学习区块链的方式是自己创建一个,本文就跟随作者用Python来创建一个区块链。 对数字货币的崛起感到新奇的我们,并且想知道其背后的技术——区块链是怎样实现的。 但是完全搞懂...

使用Protocol Buffers的C语言拓展提速Python程序的示例

 Protocol Buffers (类似XML的一种数据描述语言)最新版本2.3里,protoc—py_out命令只生成原生的Python代码。 尽管PB(Protocol...

Python的动态重新封装的教程

让我们描绘一下本文的情节:假设您要在本地机器上运行一个进程,而部分程序逻辑却在另一处。让我们特别假设这个程序逻辑会不时更新, 而您运行进程时,希望使用最新的程序逻辑。有许多方法可以满足刚...

Python实现的插入排序算法原理与用法实例分析

Python实现的插入排序算法原理与用法实例分析

本文实例讲述了Python实现的插入排序算法原理与用法。分享给大家供大家参考,具体如下: 插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数...