np.newaxis 实现为 numpy.ndarray(多维数组)增加一个轴

yipeiwu_com6年前Python基础

如下所示:

>> type(np.newaxis)
NoneType
>> np.newaxis == None
True

np.newaxis 在使用和功能上等价于 None,查看源码发现:newaxis = None,其实就是 None 的一个别名。

1. np.newaxis 的实用

>> x = np.arange(3)
>> x
array([0, 1, 2])
>> x.shape
(3,)

>> x[:, np.newaxis]
array([[0],
    [1],
    [2]])

>> x[:, None]
array([[0],
    [1],
    [2]])

>> x[:, np.newaxis].shape
 (3, 1)

2. 索引多维数组的某一列时返回的是一个行向量

>>> X = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
>>> X[:, 1]
array([2, 6, 10])    % 这里是一个行
>>> X[:, 1].shape    % X[:, 1] 的用法完全等同于一个行,而不是一个列,
(3, )

如果我们索引多维数组的某一列时,返回的仍然是列的结构,一种正确的索引方式是:

>>>X[:, 1][:, np.newaxis]
array([[2],
   [6],
   [10]])

如果想实现第二列和第四列的拼接(层叠):

>>>X_sub = np.hstack([X[:, 1][:, np.newaxis], X[:, 3][:, np.newaxis]])      
          % hstack:horizontal stack,水平方向上的层叠
>>>X_sub
array([[2, 4]
   [6, 8]
   [10, 12]])

当然更为简单的方式还是使用切片:

>> X[:, [1, 3]]
array([[ 2, 4],
    [ 6, 8],
    [10, 12]])

3. 使用 np.expand_dims

>> X = np.random.randint(0, 9, (2, 3))
>> mean_X = np.mean(X, axis=0)
>> X - mean_X           # 这样做是没有问题的

>> mean_X = np.mean(X, axis=1)
>> X - mean_X
ValueError: operands could not be broadcast together with shapes (2,3) (2,)

此时便需要手动的调整 mean_X 的维度,使其能够 broadcast,有以下三种方式,在指定的轴上进行 broadcast:

mean_X[:, None]

mean_X[:, np.newaxis]

mean_X = np.expand_dims(mean_X, axis=1)

以上这篇np.newaxis 实现为 numpy.ndarray(多维数组)增加一个轴就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python使用心得之获得github代码库列表

1.背景 项目需求,要求获得github的repo的api,以便可以提取repo的数据进行分析。研究了一天,终于解决了这个问题,虽然效率还是比较低下。 因为github的那个显示repo...

python元组操作实例解析

本文实例讲述了python元组操作方法,分享给大家供大家参考。具体分析如下: 一般来说,python的函数用法挺灵活的,和c、php的用法不太一样,和js倒是挺像的。 在照着操作时,可以...

利用python实现命令行有道词典的方法示例

利用python实现命令行有道词典的方法示例

前言 由于一直用Linux系统,对于词典的支持特别不好,对于我这英语渣渣的人来说,当看英文文档就一直卡壳,之前用惯了有道词典,感觉很不错,虽然有网页版的但是对于全站英文的网页来说并不支持...

Python加pyGame实现的简单拼图游戏实例

本文实例讲述了Python加pyGame实现的简单拼图游戏。分享给大家供大家参考。具体实现方法如下: import pygame, sys, random from pygame.l...

Pandas中DataFrame的分组/分割/合并的实现

Pandas中DataFrame的分组/分割/合并的实现

学习《Python3爬虫、数据清洗与可视化实战》时自己的一些实践。 DataFrame分组操作 注意分组后得到的就是Series对象了,而不再是DataFrame对象。 import...