numpy np.newaxis 的实用分享

yipeiwu_com5年前Python基础

如下所示:

>> type(np.newaxis)
NoneType
>> np.newaxis == None
True

np.newaxis 在使用和功能上等价于 None,其实就是 None 的一个别名。

1. np.newaxis 的实用

>> x = np.arange(3)
>> x
array([0, 1, 2])
>> x.shape
(3,)

>> x[:, np.newaxis]
array([[0],
    [1],
    [2]])

>> x[:, None]
array([[0],
    [1],
    [2]])

>> x[:, np.newaxis].shape
 (3, 1)

2. 索引多维数组的某一列时返回的是一个行向量

>>> X = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
>>> X[:, 1]
array([2, 6, 10])    % 这里是一个行
>>> X[:, 1].shape    % X[:, 1] 的用法完全等同于一个行,而不是一个列,
(3, )

如果我索引多维数组的某一列时,返回的仍然是列的结构,一种正确的索引方式是:

>>>X[:, 1][:, np.newaxis]
array([[2],
   [6],
   [10]])

如果想实现第二列和第四列的拼接(层叠):

>>>X_sub = np.hstack([X[:, 1][:, np.newaxis], X[:, 3][:, np.newaxis]])      
          % hstack:horizontal stack,水平方向上的层叠
>>>X_sub
array([[2, 4]
   [6, 8]
   [10, 12]])

当然更为简单的方式还是使用切片:

>> X[:, [1, 3]]
array([[ 2, 4],
    [ 6, 8],
    [10, 12]])

以上这篇numpy np.newaxis 的实用分享就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Django数据库表反向生成实例解析

本文我们研究下如何在django中反向生成mysql model代码,接下来我们看看具体介绍。 我们在展示django ORM反向生成之前,我们先说一下怎么样正向生成代码。 正向生成,指...

python 动态生成变量名以及动态获取变量的变量名方法

python 动态生成变量名以及动态获取变量的变量名方法

前言 需求: 必须现在需要动态创建16个list,每个list的名字不一样,但是是有规律可循,比如第一个list的名字叫: arriage_list_0=[],第二个叫arriage_...

Python 数据库操作 SQLAlchemy的示例代码

程序在运行过程中所有的的数据都存储在内存 (RAM) 中,「RAM 是易失性存储器,系统掉电后 RAM 中的所有数据将全部丢失」。在大多数情况下我们希望程序运行中产生的数据能够长久的保存...

PyQt6在全新电脑怎么样安装

在全新的电脑上安装 PyQt6,你需要先确保你的电脑上已安装了 Python 和 pip(Python 的包管理器)。以下是详细的步骤指导: 1. 安装 Python访问 Python 官方网站 下...

Python使用装饰器模拟用户登陆验证功能示例

Python使用装饰器模拟用户登陆验证功能示例

本文实例讲述了Python使用装饰器模拟用户登陆验证功能。分享给大家供大家参考,具体如下: # -*- coding:utf-8 -*- #!python3 user_list =...