numpy np.newaxis 的实用分享

yipeiwu_com5年前Python基础

如下所示:

>> type(np.newaxis)
NoneType
>> np.newaxis == None
True

np.newaxis 在使用和功能上等价于 None,其实就是 None 的一个别名。

1. np.newaxis 的实用

>> x = np.arange(3)
>> x
array([0, 1, 2])
>> x.shape
(3,)

>> x[:, np.newaxis]
array([[0],
    [1],
    [2]])

>> x[:, None]
array([[0],
    [1],
    [2]])

>> x[:, np.newaxis].shape
 (3, 1)

2. 索引多维数组的某一列时返回的是一个行向量

>>> X = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
>>> X[:, 1]
array([2, 6, 10])    % 这里是一个行
>>> X[:, 1].shape    % X[:, 1] 的用法完全等同于一个行,而不是一个列,
(3, )

如果我索引多维数组的某一列时,返回的仍然是列的结构,一种正确的索引方式是:

>>>X[:, 1][:, np.newaxis]
array([[2],
   [6],
   [10]])

如果想实现第二列和第四列的拼接(层叠):

>>>X_sub = np.hstack([X[:, 1][:, np.newaxis], X[:, 3][:, np.newaxis]])      
          % hstack:horizontal stack,水平方向上的层叠
>>>X_sub
array([[2, 4]
   [6, 8]
   [10, 12]])

当然更为简单的方式还是使用切片:

>> X[:, [1, 3]]
array([[ 2, 4],
    [ 6, 8],
    [10, 12]])

以上这篇numpy np.newaxis 的实用分享就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

浅谈python数据类型及类型转换

Python中核心的数据类型有哪些? 变量(数字、字符串、元组、列表、字典) 什么是数据的不可变性?哪些数据类型具有不可变性 数据的不可变是指数据不可更改,比如: a = ("ab...

python实现解数独程序代码

python实现解数独程序代码

偶然发现linux系统附带的一个数独游戏,打开玩了几把。无奈是个数独菜鸟,以前没玩过,根本就走不出几步就一团浆糊了。 于是就打算借助计算机的强大运算力来暴力解数独,还是很有乐趣的。 下面...

Django框架中处理URLconf中特定的URL的方法

有时你有一个模式来处理在你的URLconf中的一系列URL,但是有时候需要特别处理其中的某个URL。 在这种情况下,要使用将URLconf中把特殊情况放在首位的线性处理方式 。 比方说,...

学习python (2)

一个好的集成开发环境,能很大地提高编程效率。所以,我得需要先找一个好的python 的开发工具。...

Python 'takes exactly 1 argument (2 given)' Python error

Python初学,定义urlConfig 接收参数,正常传递参数时,出现,多给了一个参数的错误问题, 定义class的函数之后,在调用的时候出现“'takes exactly 1 arg...