如何用OpenCV -python3实现视频物体追踪

yipeiwu_com5年前Python基础

opencv

OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和Mac OS操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。

OpenCV用C++语言编写,它的主要接口也是C++语言,但是依然保留了大量的C语言接口。该库也有大量的Python、Java and MATLAB/OCTAVE(版本2.5)的接口。这些语言的API接口函数可以通过在线文档获得。如今也提供对于C#、Ch、Ruby,GO的支持。

所有新的开发和算法都是用C++接口。一个使用CUDA的GPU接口也于2010年9月开始实现。

import numpy as np
import cv2
cap =cv2.VideoCapture(0)
while(1):
  #获取每一帧
  ret,frame = cap.read()
  #RGB转换到HSV
  hsv = cv2.cvtColor(frame,cv2.COLOR_BGR2HSV)
  #设定蓝色的阈值。确定要追踪的颜色为蓝色。
  lower_blue = np.array([100,50,50])
  upper_blue = np.array([120,255,255])
  #根据阈值构建掩模,构建黑白图
  #hsv:原图
  #lower_blue:图像中低于这个lower_blue的值,图像值变为0,即黑色
  #upper_blue:图像中高于这个upper_blue的值,图像值变为0
  #而在lower_blue~upper_blue之间的值变成255,即白色。
  mask = cv2.inRange(hsv,lower_blue,upper_blue)
  #对原图像和掩模进行位运算
  #蓝色覆盖白色区域,黑色不覆盖,实现了白色转化为要追踪的蓝色,也就是追踪效果。
  res = cv2.bitwise_and(frame,frame,mask=mask)
  #显示图像
  cv2.imshow('frame',frame)
  cv2.imshow('mask',mask)
  cv2.imshow('res',res)
  k = cv2.waitKey(5)& 0xFF
  if k==27:
    break
#关闭窗口
cv2.destroyAllWindows()

关于颜色阈值图(百度)。

在这里插入图片描述

结果如下图所示。

在这里插入图片描述

总结

以上所述是小编给大家介绍的如何用OpenCV -python3实现视频物体追踪,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对【听图阁-专注于Python设计】网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

相关文章

Python实现字符串格式化的方法小结

Python2.6+ 增加了str.format函数,用来代替原有的'%'操作符。它使用比'%'更加直观、灵活。下面详细介绍一下它的使用方法。 下面是使用'%'的例子: "" "P...

在Python的Django框架中包装视图函数

我们最终的视图技巧利用了一个高级python技术。 假设你发现自己在各个不同视图里重复了大量代码,就像 这个例子: def my_view1(request): if not r...

Python脚本按照当前日期创建多级目录

使用python脚本按照年月日生成多级目录,创建的目录可以将系统生成的日志文件放入其中,方便查阅,代码如下: #!/usr/bin/env python #coding=utf-8...

详解python读取image

python 读取image 在python中我们有两个库可以处理图像文件,scipy和matplotlib. 安装库 pip install matplotlib pillow s...

python使用Qt界面以及逻辑实现方法

python使用Qt界面以及逻辑实现方法

用过Qt的朋友 特别是QtCreator的习惯在界面UI上面对应的CPP中写代码。但是在PyQt中不是这样的。pyQt只是个界面,只会生成界面即UI,就算是一个按钮也需要在python只...