关于numpy数组轴的使用详解

yipeiwu_com6年前Python基础

概述

按照图一中aixs=0,对aixs=0上下对应的数据进行相加在学习numpy的时候,最难理解的就是轴的概念,我们知道坐标系中有轴的概念,那么两个轴是否有关联呢?为了便于理解,特写此博客进行梳理。

正文

首先数组的维数比较好理解,下面我们创建一个数组:

import numpy as np
# 创建一个三维数组
b=np.arange(24).reshape(4,3,2)

打印结果:

[[[ 0 1]
 [ 2 3]
 [ 4 5]]
 
 [[ 6 7]
 [ 8 9]
 [10 11]]
 
 [[12 13]
 [14 15]
 [16 17]]

b 是一个三维数组:

第一维有三个元素

第二维有三个元素

第三维有四个元素

上面的数据也可以用下列方式展示(图一)

对于下面按照aixs=0进行sum:

print(b.sum(0))

按照图一中aixs=0,对aixs=0上下对应的数据进行相加,数据从(4,3,2)降维到(3,2)

[[0+ 6+12+18=36  1+ 7+13+19=40]
 [2+ 8+14+20=44  3+ 9+15+21=48]
 [4+10+16+22=52  5+11+17+23=56]]

对于下面按照aixs=1进行sum:

print(b.sum(1))

按照图一中aixs=1,按照比1小的轴对数据进行划分(即aixs=0),然后对划分的每一部分中数据中的aixs=1上下对应的数据进行相加,数据从(4,3,2)降维到(4,2)

[[ 0+ 2+ 4=6  1+ 3+ 5=9]
 [ 6+ 8+10=24 7+ 9+11=27]
 [12+14+16=42 13+15+17=45]
 [18+20+22=60 19+21+23+63]]

对于下面按照aixs=2进行sum:

print(b.sum(2))

按照图一中aixs=2,按照比2小的轴对数据进行划分(即aixs=0,aixs=1),然后对划分的每一部分中数据中的aixs=2上下对应的数据进行相加,数据从(4,3,2)降维到(4,3)

[[ 0+ 1=1  2+ 3=5  4+ 5=9]
 [ 6+ 7=13 8+ 9=17 10+11=21]
 [12+13=25 14+15=29 16+17=33]
 [18+19=37 20+21=41 22+23=45]]

总结:

aixs的范围是0到数组的维数(不包括维数)

轴的划分是按照维数进行

相加时按照轴进行对象相加,但是不能跨越比当前轴低的轴

以上这篇关于numpy数组轴的使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Django 如何获取前端发送的头文件详解(推荐)

Django 如何获取前端发送的头文件详解(推荐)

Django里面,我们知道可以在函数里面里面通过参数获取前端发来的数据。 比如可以通过request获取各种form的值啊,cookie啊等等。 def index(reqeust)...

python访问类中docstring注释的实现方法

本文实例讲述了python访问类中docstring注释的实现方法。分享给大家供大家参考。具体分析如下: python的类注释是可以通过代码访问的,这样非常利于书写说明文档 clas...

Python 70行代码实现简单算式计算器解析

描述:用户输入一系列算式字符串,程序返回计算结果。 要求:不使用eval、exec函数。 实现思路:找到当前字符串优先级最高的表达式,在算术运算中,()优先级最高,则取出算式最底层的()...

pandas object格式转float64格式的方法

在数据处理过程中 比如从CSV文件中导入数据 data_df = pd.read_csv("names.csv") 在处理之前一定要查看数据的类型 data_df.info()...

对numpy Array [: ,] 的取值方法详解

NumPy数组是一个多维数组对象,称为ndarray 创建一个numpy数组,如下所示 import numpy as np x=np.array([[1,2,3],[4,5,6],...