Python数据可视化:泊松分布详解

yipeiwu_com5年前Python基础

一个服从泊松分布的随机变量X,表示在具有比率参数(rate parameter)λ的一段固定时间间隔内,事件发生的次数。参数λ告诉你该事件发生的比率。随机变量X的平均值和方差都是λ。

代码实现:

 # Poisson分布
 x = np.random.poisson(lam=5, size=10000) # lam为λ size为k
 pillar = 15
 a = plt.hist(x, bins=pillar, normed=True, range=[0, pillar], color='g', alpha=0.5)
 plt.plot(a[1][0:pillar], a[0], 'r')
 plt.grid()
 plt.show()

以上这篇Python数据可视化:泊松分布详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

pip install urllib2不能安装的解决方法

python35 urllib2 不能用 Could not find a version that satisfies the requirement urllib2 (from...

Python提取频域特征知识点浅析

Python提取频域特征知识点浅析

在多数的现代语音识别系统中,人们都会用到频域特征。梅尔频率倒谱系数(MFCC),首先计算信号的功率谱,然后用滤波器和离散余弦变换的变换来提取特征。本文重点介绍如何提取MFCC特征。 首先...

python从内存地址上加载python对象过程详解

这篇文章主要介绍了python从内存地址上加载pythn对象过程详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 在python中我...

深入了解如何基于Python读写Kafka

这篇文章主要介绍了深入了解如何基于Python读写Kafka,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 本篇会给出如何使用pyth...

使用TensorFlow对图像进行随机旋转的实现示例

使用TensorFlow对图像进行随机旋转的实现示例

在使用深度学习对图像进行训练时,对图像进行随机旋转有助于提升模型泛化能力。然而之前在做旋转等预处理工作时,都是先对图像进行旋转后保存到本地,然后再输入模型进行训练,这样的过程会增加工作量...