python 多维高斯分布数据生成方式

yipeiwu_com6年前Python基础

我就废话不多说了,直接上代码吧!

import numpy as np
import matplotlib.pyplot as plt


def gen_clusters():
  mean1 = [0,0]
  cov1 = [[1,0],[0,10]]
  data = np.random.multivariate_normal(mean1,cov1,100)
  
  mean2 = [10,10]
  cov2 = [[10,0],[0,1]]
  data = np.append(data,
           np.random.multivariate_normal(mean2,cov2,100),
           0)
  
  mean3 = [10,0]
  cov3 = [[3,0],[0,4]]
  data = np.append(data,
           np.random.multivariate_normal(mean3,cov3,100),
           0)
  
  return np.round(data,4)

def save_data(data,filename):
  with open(filename,'w') as file:
    for i in range(data.shape[0]):
      file.write(str(data[i,0])+','+str(data[i,1])+'\n')
      
def load_data(filename):
  data = []
  with open(filename,'r') as file:
    for line in file.readlines():
      data.append([ float(i) for i in line.split(',')])
  return np.array(data)

def show_scatter(data):
  x,y = data.T
  plt.scatter(x,y)
  plt.axis()
  plt.title("scatter")
  plt.xlabel("x")
  plt.ylabel("y")
  
data = gen_clusters()
save_data(data,'3clusters.txt')
d = load_data('3clusters.txt')
show_scatter(d)

以上这篇python 多维高斯分布数据生成方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

numpy.std() 计算矩阵标准差的方法

计算矩阵标准差 >>> a = np.array([[1, 2], [3, 4]]) >>> np.std(a) # 计算全局标准差 1.1180...

Python解析nginx日志文件

项目的一个需求是解析nginx的日志文件。 简单的整理如下: 日志规则描述 首先要明确自己的Nginx的日志格式,这里采用默认Nginx日志格式: log_format main...

用Python画小女孩放风筝的示例

用Python画小女孩放风筝的示例

我就废话不多说了,直接上代码吧! # coding:utf-8 2import turtle as t 3import random 4# 画心 5def xin(): 6...

Python定时任务工具之APScheduler使用方式

APScheduler (advanceded python scheduler)是一款Python开发的定时任务工具。 文档地址 apscheduler.readthedoc...

Python的bit_length函数来二进制的位数方法

自Python3.1中,整数bit_length方法允许查询二进制的位数或长度。 常规做法: >>> bin(256) '0b100000000' >&g...