python 多维高斯分布数据生成方式

yipeiwu_com6年前Python基础

我就废话不多说了,直接上代码吧!

import numpy as np
import matplotlib.pyplot as plt


def gen_clusters():
  mean1 = [0,0]
  cov1 = [[1,0],[0,10]]
  data = np.random.multivariate_normal(mean1,cov1,100)
  
  mean2 = [10,10]
  cov2 = [[10,0],[0,1]]
  data = np.append(data,
           np.random.multivariate_normal(mean2,cov2,100),
           0)
  
  mean3 = [10,0]
  cov3 = [[3,0],[0,4]]
  data = np.append(data,
           np.random.multivariate_normal(mean3,cov3,100),
           0)
  
  return np.round(data,4)

def save_data(data,filename):
  with open(filename,'w') as file:
    for i in range(data.shape[0]):
      file.write(str(data[i,0])+','+str(data[i,1])+'\n')
      
def load_data(filename):
  data = []
  with open(filename,'r') as file:
    for line in file.readlines():
      data.append([ float(i) for i in line.split(',')])
  return np.array(data)

def show_scatter(data):
  x,y = data.T
  plt.scatter(x,y)
  plt.axis()
  plt.title("scatter")
  plt.xlabel("x")
  plt.ylabel("y")
  
data = gen_clusters()
save_data(data,'3clusters.txt')
d = load_data('3clusters.txt')
show_scatter(d)

以上这篇python 多维高斯分布数据生成方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python numpy格式化打印的实例

1.问题描述 在使用numpy的时候,我们经常在debug的时候将numpy数组打印下来,但是有的时候数组里面都是小数,数组又比较大,打印下来的时候非常不适合观察。这里主要讲一下如何让n...

Python实现计算文件夹下.h和.cpp文件的总行数

平时自己写了很多代码,但从没好好计算总共写了多少行,面试时被问起来,就傻了。。。闲来无事,写个python程序来统计下 import os ###################...

解决python读取几千万行的大表内存问题

Python导数据的时候,需要在一个大表上读取很大的结果集。 如果用传统的方法,Python的内存会爆掉,传统的读取方式默认在内存里缓存下所有行然后再处理,内存容易溢出 解决的方法: 1...

Python enumerate遍历数组示例应用

    其他语言中,比如C#,我们通常遍历数组是的方法是:for (int i = 0; i <&nbs...

python实现图片二值化及灰度处理方式

我就废话不多说了,直接上代码吧! 集成环境:win10 pycharm #!/usr/bin/env python3.5.2 # -*- coding: utf-8 -*- ''...