Python实现word2Vec model过程解析

yipeiwu_com6年前Python基础

这篇文章主要介绍了Python实现word2Vec model过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

import gensim, logging, os
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
import nltk

corpus = nltk.corpus.brown.sents()

fname = 'brown_skipgram.model'
if os.path.exists(fname):
  # load the file if it has already been trained, to save repeating the slow training step below
  model = gensim.models.Word2Vec.load(fname)
else:
  # can take a few minutes, grab a cuppa
  model = gensim.models.Word2Vec(corpus, size=100, min_count=5, workers=2, iter=50)
  model.save(fname)

words = "woman women man girl boy green blue".split()
for w1 in words:
  for w2 in words:
    print(w1, w2, model.similarity(w1, w2))

print(model.most_similar(positive=['woman', ''], topn=1))
print(model.similarity('woman', 'girl'))girl

在gensim模块中已经封装了13年提出的model--word2vec,所以我们直接开始建立模型

这是建立模型的过程,最后会出现saving Word2vec的语句,代表已经成功建立了模型

这是输入了 gorvement和news关键词后 所反馈的词语 --- administration, 他们之间的相关性是0.508

当我在输入 women 和 man ,他们显示的相关性的0.638 ,已经是非常高的一个数字。

值得一提的是,我用的语料库是直接从nltk里的brown语料库。其中大概包括了一些新闻之类的数据。

大家如果感兴趣的话,可以自己建立该模型,通过传入不同的语料库,来calc 一些term的 相关性噢

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python中实现的RC4算法

闲暇之时,用Python实现了一下RC4算法 编码 UTF-8 class 方式 #/usr/bin/python #coding=utf-8 import sys,os,hash...

java直接调用python脚本的例子

java直接调用python脚本的例子

复制代码 代码如下:import java.io.BufferedReader;import java.io.InputStreamReader; public class Main {...

python使用mysql的两种使用方式

python使用mysql的两种使用方式

Python操作MySQL主要使用两种方式: 原生模块 pymsql ORM框架 SQLAchemy pymql pymsql是Python中操作MySQL的模块,在wind...

Python3.7 pyodbc完美配置访问access数据库

Python3.7 pyodbc完美配置访问access数据库

环境 win2008 r2 64为系统 python3.7、pyodbc 安装好python3.7以后,那么就需要安装pyodbc了。 数据库连接 数据库连接网上大致有两种方法,一种是使...

python 全文检索引擎详解

python 全文检索引擎详解 最近一直在探索着如何用Python实现像百度那样的关键词检索功能。说起关键词检索,我们会不由自主地联想到正则表达式。正则表达式是所有检索的基础,pytho...