Python实现word2Vec model过程解析

yipeiwu_com6年前Python基础

这篇文章主要介绍了Python实现word2Vec model过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

import gensim, logging, os
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
import nltk

corpus = nltk.corpus.brown.sents()

fname = 'brown_skipgram.model'
if os.path.exists(fname):
  # load the file if it has already been trained, to save repeating the slow training step below
  model = gensim.models.Word2Vec.load(fname)
else:
  # can take a few minutes, grab a cuppa
  model = gensim.models.Word2Vec(corpus, size=100, min_count=5, workers=2, iter=50)
  model.save(fname)

words = "woman women man girl boy green blue".split()
for w1 in words:
  for w2 in words:
    print(w1, w2, model.similarity(w1, w2))

print(model.most_similar(positive=['woman', ''], topn=1))
print(model.similarity('woman', 'girl'))girl

在gensim模块中已经封装了13年提出的model--word2vec,所以我们直接开始建立模型

这是建立模型的过程,最后会出现saving Word2vec的语句,代表已经成功建立了模型

这是输入了 gorvement和news关键词后 所反馈的词语 --- administration, 他们之间的相关性是0.508

当我在输入 women 和 man ,他们显示的相关性的0.638 ,已经是非常高的一个数字。

值得一提的是,我用的语料库是直接从nltk里的brown语料库。其中大概包括了一些新闻之类的数据。

大家如果感兴趣的话,可以自己建立该模型,通过传入不同的语料库,来calc 一些term的 相关性噢

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python查询文件夹下excel的sheet名代码实例

本文实例为大家分享了python查询文件夹下excel的sheet的具体代码,供大家参考,具体内容如下 import os,sys,stat,xlrd path=r"F:\360D...

三步实现Django Paginator分页的方法

三步实现Django Paginator分页的方法

Django提供了一个新的类来帮助管理分页数据,这个类存放在django/core/paginator.py.它可以接收列表、元组或其它可迭代的对象。本文将分三步介绍Django Pag...

利用Python+Java调用Shell脚本时的死锁陷阱详解

前言 最近有一项需求,要定时判断任务执行条件是否满足并触发 Spark 任务,平时编写 Spark 任务时都是封装为一个 Jar 包,然后采用 Shell 脚本形式传入所需参数执行,考虑...

python写一个md5解密器示例

python写一个md5解密器示例

前言: md5解密,百度了一下发现教程不是很多也不详细。 这个图都没一张。。。 0x01 windows环境,kali也可以啊 burpsuite requests模块 bs4模块 0...

浅谈python数据类型及类型转换

Python中核心的数据类型有哪些? 变量(数字、字符串、元组、列表、字典) 什么是数据的不可变性?哪些数据类型具有不可变性 数据的不可变是指数据不可更改,比如: a = ("ab...