Python实现word2Vec model过程解析

yipeiwu_com6年前Python基础

这篇文章主要介绍了Python实现word2Vec model过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

import gensim, logging, os
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
import nltk

corpus = nltk.corpus.brown.sents()

fname = 'brown_skipgram.model'
if os.path.exists(fname):
  # load the file if it has already been trained, to save repeating the slow training step below
  model = gensim.models.Word2Vec.load(fname)
else:
  # can take a few minutes, grab a cuppa
  model = gensim.models.Word2Vec(corpus, size=100, min_count=5, workers=2, iter=50)
  model.save(fname)

words = "woman women man girl boy green blue".split()
for w1 in words:
  for w2 in words:
    print(w1, w2, model.similarity(w1, w2))

print(model.most_similar(positive=['woman', ''], topn=1))
print(model.similarity('woman', 'girl'))girl

在gensim模块中已经封装了13年提出的model--word2vec,所以我们直接开始建立模型

这是建立模型的过程,最后会出现saving Word2vec的语句,代表已经成功建立了模型

这是输入了 gorvement和news关键词后 所反馈的词语 --- administration, 他们之间的相关性是0.508

当我在输入 women 和 man ,他们显示的相关性的0.638 ,已经是非常高的一个数字。

值得一提的是,我用的语料库是直接从nltk里的brown语料库。其中大概包括了一些新闻之类的数据。

大家如果感兴趣的话,可以自己建立该模型,通过传入不同的语料库,来calc 一些term的 相关性噢

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python设定并获取socket超时时间的方法

python写法 import socket def test_socket_timeout(): s = socket.socket(socket.AF_INET,...

python清除指定目录内所有文件中script的方法

本文实例讲述了python清除指定目录内所有文件中script的方法。分享给大家供大家参考。具体如下: 将脚本存储为stripscripts.py 调用语法 : python stri...

基于Django框架利用Ajax实现点赞功能实例代码

基于Django框架利用Ajax实现点赞功能实例代码

概要: 要实现点赞功能,需要实现的有:谁进行的点赞、什么时候进行点赞、点赞的对象是谁、每一个对象的点赞数量是多少、点赞过后还需要能够取消点赞,为了是点赞后的信息能够及时的显示在前端页面,...

python条件变量之生产者与消费者操作实例分析

python条件变量之生产者与消费者操作实例分析

本文实例讲述了python条件变量之生产者与消费者操作。分享给大家供大家参考,具体如下: 互斥锁是最简单的线程同步机制,面对复杂线程同步问题,Python还提供了Condition对象。...

SublimeText 2编译python出错的解决方法(The system cannot find the file specified)

[Error 2] The system cannot find the file specified 解决方法:1.环境变量path添加:C:\Python32\Tools\Scrip...