Python实现word2Vec model过程解析

yipeiwu_com6年前Python基础

这篇文章主要介绍了Python实现word2Vec model过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

import gensim, logging, os
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
import nltk

corpus = nltk.corpus.brown.sents()

fname = 'brown_skipgram.model'
if os.path.exists(fname):
  # load the file if it has already been trained, to save repeating the slow training step below
  model = gensim.models.Word2Vec.load(fname)
else:
  # can take a few minutes, grab a cuppa
  model = gensim.models.Word2Vec(corpus, size=100, min_count=5, workers=2, iter=50)
  model.save(fname)

words = "woman women man girl boy green blue".split()
for w1 in words:
  for w2 in words:
    print(w1, w2, model.similarity(w1, w2))

print(model.most_similar(positive=['woman', ''], topn=1))
print(model.similarity('woman', 'girl'))girl

在gensim模块中已经封装了13年提出的model--word2vec,所以我们直接开始建立模型

这是建立模型的过程,最后会出现saving Word2vec的语句,代表已经成功建立了模型

这是输入了 gorvement和news关键词后 所反馈的词语 --- administration, 他们之间的相关性是0.508

当我在输入 women 和 man ,他们显示的相关性的0.638 ,已经是非常高的一个数字。

值得一提的是,我用的语料库是直接从nltk里的brown语料库。其中大概包括了一些新闻之类的数据。

大家如果感兴趣的话,可以自己建立该模型,通过传入不同的语料库,来calc 一些term的 相关性噢

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

django限制匿名用户访问及重定向的方法实例

前言 大家应该都遇到过,在某些页面中,我们不希望匿名用户能够访问,例如个人页面等,这种页面只允许已经登录的用户去访问,在django中,我们也有比较多的方式去实现。 最简单的,我们在v...

Django对models里的objects的使用详解

首先我们先熟悉下objects的大致概念. object是模型属性---用于模型对象和数据库交互 . objects = Manager() 是管理器类型的对象 ,是Model和数据库进...

Python3使用requests模块实现显示下载进度的方法详解

本文实例讲述了Python3使用requests模块实现显示下载进度的方法。分享给大家供大家参考,具体如下: 一、配置request 1. 相关资料 请求关键参数:stream=True...

如何修复使用 Python ORM 工具 SQLAlchemy 时的常见陷阱

在使用 SQLAlchemy 时,那些看似很小的选择可能对这种对象关系映射工具包的性能产生重要影响。 对象关系映射Object-relational mapping(ORM)使应用程序开...

浅谈django中的认证与登录

认证登录 django.contrib.auth中提供了许多方法,这里主要介绍其中的三个: 1  authenticate(**credentials)  ...