Python实现word2Vec model过程解析

yipeiwu_com6年前Python基础

这篇文章主要介绍了Python实现word2Vec model过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

import gensim, logging, os
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
import nltk

corpus = nltk.corpus.brown.sents()

fname = 'brown_skipgram.model'
if os.path.exists(fname):
  # load the file if it has already been trained, to save repeating the slow training step below
  model = gensim.models.Word2Vec.load(fname)
else:
  # can take a few minutes, grab a cuppa
  model = gensim.models.Word2Vec(corpus, size=100, min_count=5, workers=2, iter=50)
  model.save(fname)

words = "woman women man girl boy green blue".split()
for w1 in words:
  for w2 in words:
    print(w1, w2, model.similarity(w1, w2))

print(model.most_similar(positive=['woman', ''], topn=1))
print(model.similarity('woman', 'girl'))girl

在gensim模块中已经封装了13年提出的model--word2vec,所以我们直接开始建立模型

这是建立模型的过程,最后会出现saving Word2vec的语句,代表已经成功建立了模型

这是输入了 gorvement和news关键词后 所反馈的词语 --- administration, 他们之间的相关性是0.508

当我在输入 women 和 man ,他们显示的相关性的0.638 ,已经是非常高的一个数字。

值得一提的是,我用的语料库是直接从nltk里的brown语料库。其中大概包括了一些新闻之类的数据。

大家如果感兴趣的话,可以自己建立该模型,通过传入不同的语料库,来calc 一些term的 相关性噢

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

用python标准库difflib比较两份文件的异同详解

用python标准库difflib比较两份文件的异同详解

【需求背景】 有时候我们要对比两份配置文件是不是一样,或者比较两个文本是否异样,可以使用linux命令行工具diff a_file b_file,但是输出的结果读起来不是很友好。这时候使...

python实现的按要求生成手机号功能示例

本文实例讲述了python实现的按要求生成手机号功能。分享给大家供大家参考,具体如下: 看到一个生成手机号的代码,于是自己优化了一下,可以支持按要求生成手机号。 #!/usr/bin...

python操作kafka实践的示例代码

python操作kafka实践的示例代码

1、先看最简单的场景,生产者生产消息,消费者接收消息,下面是生产者的简单代码。 #!/usr/bin/env python # -*- coding: utf-8 -*- impor...

python实现pdf转换成word/txt纯文本文件

本文实例为大家分享了python实现pdf转word/txt,供大家参考,具体内容如下 依赖包:pdfminer3k 可以通过pip安装;也可以到官网下载,解压,进入文件夹,输入命令s...

PyTorch 随机数生成占用 CPU 过高的解决方法

PyTorch 随机数生成占用 CPU 过高的问题 今天在使用 pytorch 的过程中,发现 CPU 占用率过高。经过检查,发现是因为先在 CPU 中生成了随机数,然后再调用.to(d...