Python实现word2Vec model过程解析

yipeiwu_com6年前Python基础

这篇文章主要介绍了Python实现word2Vec model过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

import gensim, logging, os
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
import nltk

corpus = nltk.corpus.brown.sents()

fname = 'brown_skipgram.model'
if os.path.exists(fname):
  # load the file if it has already been trained, to save repeating the slow training step below
  model = gensim.models.Word2Vec.load(fname)
else:
  # can take a few minutes, grab a cuppa
  model = gensim.models.Word2Vec(corpus, size=100, min_count=5, workers=2, iter=50)
  model.save(fname)

words = "woman women man girl boy green blue".split()
for w1 in words:
  for w2 in words:
    print(w1, w2, model.similarity(w1, w2))

print(model.most_similar(positive=['woman', ''], topn=1))
print(model.similarity('woman', 'girl'))girl

在gensim模块中已经封装了13年提出的model--word2vec,所以我们直接开始建立模型

这是建立模型的过程,最后会出现saving Word2vec的语句,代表已经成功建立了模型

这是输入了 gorvement和news关键词后 所反馈的词语 --- administration, 他们之间的相关性是0.508

当我在输入 women 和 man ,他们显示的相关性的0.638 ,已经是非常高的一个数字。

值得一提的是,我用的语料库是直接从nltk里的brown语料库。其中大概包括了一些新闻之类的数据。

大家如果感兴趣的话,可以自己建立该模型,通过传入不同的语料库,来calc 一些term的 相关性噢

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

django 框架实现的用户注册、登录、退出功能示例

本文实例讲述了django 框架实现的用户注册、登录、退出功能。分享给大家供大家参考,具体如下: 1 用户注册: from django.contrib import auth fr...

Python 虚拟空间的使用代码详解

Python 虚拟空间的使用代码详解

具体代码如下所示: # 在项目根目录创建 python3 -m venv 虚拟空间名称 ## 如 python3 -m venv myvenv # 对于 macOS ## 在项目根...

python 直接赋值和copy的区别详解

直接赋值和copy的区别: 直接赋值:其实就是对象的引用(别名)。 浅拷贝(copy):拷贝父对象,不会拷贝对象的内部的子对象。 深拷贝(deepcopy): copy 模...

Python中subprocess模块用法实例详解

本文实例讲述了Python中subprocess模块用法。分享给大家供大家参考。具体如下: 执行命令: >>> subprocess.call(["ls", "-l...

python中利用xml.dom模块解析xml的方法教程

一、什么是xml?有何特征? xml即可扩展标记语言,它可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。 例子:del.xml <?xm...