Python实现word2Vec model过程解析

yipeiwu_com6年前Python基础

这篇文章主要介绍了Python实现word2Vec model过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

import gensim, logging, os
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
import nltk

corpus = nltk.corpus.brown.sents()

fname = 'brown_skipgram.model'
if os.path.exists(fname):
  # load the file if it has already been trained, to save repeating the slow training step below
  model = gensim.models.Word2Vec.load(fname)
else:
  # can take a few minutes, grab a cuppa
  model = gensim.models.Word2Vec(corpus, size=100, min_count=5, workers=2, iter=50)
  model.save(fname)

words = "woman women man girl boy green blue".split()
for w1 in words:
  for w2 in words:
    print(w1, w2, model.similarity(w1, w2))

print(model.most_similar(positive=['woman', ''], topn=1))
print(model.similarity('woman', 'girl'))girl

在gensim模块中已经封装了13年提出的model--word2vec,所以我们直接开始建立模型

这是建立模型的过程,最后会出现saving Word2vec的语句,代表已经成功建立了模型

这是输入了 gorvement和news关键词后 所反馈的词语 --- administration, 他们之间的相关性是0.508

当我在输入 women 和 man ,他们显示的相关性的0.638 ,已经是非常高的一个数字。

值得一提的是,我用的语料库是直接从nltk里的brown语料库。其中大概包括了一些新闻之类的数据。

大家如果感兴趣的话,可以自己建立该模型,通过传入不同的语料库,来calc 一些term的 相关性噢

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python面向对象实现一个对象调用另一个对象操作示例

本文实例讲述了Python面向对象实现一个对象调用另一个对象操作。分享给大家供大家参考,具体如下: 我先总结一下python中的类的特点: 1.类中所有的方法的参数中都必须加self,并...

利用python实现冒泡排序算法实例代码

利用python实现冒泡排序算法实例代码

冒泡排序 冒泡排序(英语:Bubble Sort)是一种简单的排序算法。它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。遍历数列的工作是重复地进行直到没...

如何用Python来理一理红楼梦里的那些关系

如何用Python来理一理红楼梦里的那些关系

前言 今天,一起用 Python 来理一理红楼梦里的那些关系 不要问我为啥是红楼梦,而不是水浒三国或西游,因为我也鉴定的认为,红楼才是无可争议的中国古典小说只巅峰,且不接受反驳!而红楼...

pandas.DataFrame删除/选取含有特定数值的行或列实例

pandas.DataFrame删除/选取含有特定数值的行或列实例

1.删除/选取某列含有特殊数值的行 import pandas as pd import numpy as np a=np.array([[1,2,3],[4,5,6],[7,8...

Python Mysql自动备份脚本

测试系统环境  Windows 2003   python 2.5.1  mysql ...